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Foreword
The impact of microarray measurements on biology and bioinformatics has been astounding.
Starting from virtually no literature a few years ago, this field has come to dominate many
conferences and journals. As an example, the Intelligent Systems for Molecular Biology conference,
the annual meeting of the International Society for Computational Biology held in Copenhagen in
2002, had almost 50% of its papers in the areas addressed directly or indirectly within this book.
Four years ago, there were none. Bioinformatics has always been driven by the availability of
data—sequential, structural, and most recently functional. The availability of sequence data brought
into biology a cadre of computer scientists with special skills in string processing. The availability of
structural data brought in technical experts in visualization and computational geometry. This most
recent development—the availability of relatively large data sets measuring the expression of genes
within cells—has helped attract yet another group of scientists—the data miners, machine learners
and statisticians.

In many ways, the impact of this data on biology and informatics can be summarized in figure 1.4 of
this book—the world has not quite been turned upside down, but it certainly has been turned on its
side! A decade ago, if confronted with the data matrix shown on the right of this figure, a
well−trained information scientist would say "This is ridiculous. Why would you ask me to analyze a
data set where you clearly have a profoundly under−determined problem? There's not enough data
here to distinguish between any of the zillion hypotheses that could be consistent with this data set.
And who designed these experiments, anyway? How can you measure so many features of such a
few examples?" Yet, these experiments are proceeding and are making major contributions to our
understanding of how gene systems interact, how to distinguish different types of cancer, and how
to measure the impact of the environment on a cell. Our information scientist friend is, in some
sense, correct about the relative paucity of data. (Have you ever tried to convinced a biologist
holding a microarray with 45,000 spots that this is a relatively data−poor exercise? It's not fun.)
However, the information scientist has missed the point about the design and analysis of these
experiments. These data sets do indeed contain gold, but the experiments (as for all experiments)
must be considered carefully in both the design and implementation phases in order to maximize
value. This is where the authors of this book have made a contribution. They start from the premise
that these experiments offer great potential, but must be performed and analyzed carefully. They set
the context of traditional reductionist biology, and then go on to discuss the design, analysis,
storage and interpretation of this first generation of functional genomics experiments. The writing is
lively and candid, and the examples are taken from an array of applications. The authors' practical
experience in dealing with this data comes through, and they intersperse practical advice with
philosophical reverie. Sometimes, these two merge into important discussions such as on the role of
ontologies in making sense of these data sets, or on the challenges of linking microarray results
with phenotypic data pertinentto human disease.

The functional genomics revolution is here. We do not knowhow it will change our view of biology
and medicine. They are both much more likely to become quantitative and systematic (as opposed
to qualitative and reductionist). The informatics techniques required to address this revolution are
not entirely clear, but this text gets us started in the right direction.

Russ Altman

Stanford University

March 2002
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Preface
Three years ago, when a colleague would approach us with questions about functional genomics
and the informatics techniques required to leverage the data obtained from measurement
techniques such as DNA microarrays, we had a standard response: "Come listen to a 1−hour
presentation by one of us and you'll have a foundation for further discussions." Since then, this
response has become inadequate. First, the field can hardly be summarized in even eight 1−hour
lectures, and second, the growth in the number of potential collaborators has far outstripped the
time available to us to make the necessary presentations.

In early 2000, Ben Reis, one of the graduates of the Children's Hospital Informatics Program, had
the inspired idea of formalizing our introductory presentations into a book. We immediately agreed
that this was a timely suggestion and to its credit, so did The MIT Press. In our teaching duties in
several courses within the Division of Health Sciences and Technology (HST) at Harvard/MIT the
range of topics within functional genomics that we were covering in formal presentations grew
rapidly. Subsequently, with the inception of the Bioinformatics and Integrative Genomics training
program at HST and the development of a Genomic Medicine course at HST, we felt the need for
this book all the more acutely.

Organization of the text

We recognize that the readership of this book will be varied due to the intrinsically multidisciplinary
nature of the functional genomics enterprise (as will be emphasized in the introductory chapter).
Accordingly we outline the content of the following chapters so that readers may choose for
themselves the path that suits them. Nonetheless, our intent and contention is that the current
ordering of the chapters provides the most efficient way of acquiring the content of this book.

Introduction. Here we establish the motivation and the scope of this book and touch upon
substantial obstacles to success in the successful application of bioinformatics to an integrative
genomics. The notion of an interdisciplinary functional genomics pipeline is introduced. We also
review which kind of readers might find this book worthwhile. The promise and limitations of
functional genomics techniques, the nature of various kinds of genomic data, and the central role
played by the discipline of bioinformatics are outlined. For those who have a limited background in
biological sciences, there is a subsection on the basic minimum of molecular biology concepts that
will be needed to grasp the the following chapters.

Chapter 2. Experimental Design. This chapter develops a framework for approaching the design of
microarray−driven functional genomics experiments. Very little here is quantitative or mathematical.
Rather the emphasis is on ways of thinking about the design of experiments and how it might
impact the yield of these experiments. We address challenges that are particular to computer
scientists (e.g., defining a figure merit for the performance of the bioinformatics algorithms) and to
biologists (e.g., discarding potentially valuable data using formal decision theory because of the
scale issues in massively parallel data acquisition using noisy measurement devices), respectively.
In exploring the design issues we introduce the functional genomics clustering dogma, the broad
machine−learning categories of supervised and unsupervised learning, and the nature of the
analyses developed using these techniques.

Chapter 3. Microarray Measurements to Analyses. We lay the foundations for performing analyses
of microarray data sets. This is the first of the more quantitative and mathematical chapters. We
start with a discussion of the acquisition of digital data from the two most widely employed classes
of microarrays. Then we consider the two most generic problems of comparing gene expression
within a single microarray, i.e., intra−array analyses, and comparing expression across microarrays,
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i.e., inter−array analyses; in so doing, we introduce the fundamental concept of (dis)similarity and
similarity measures and the several kinds of such measures. These measures become the building
blocks for the genomic data−mining techniques described in the following chapter.

Chapter 4. Genomic Data−Mining Techniques. When gene expression is measured in more than
two samples, gene expression patterns have to be analyzed using methods that consider the
coordinated interactions of genes across multiple conditions. This chapter assesses the
components of biomedical experiments that can be included in a data−mining investigation. We
then cover the most commonly used analytic techniques, discussing the advantages and
disadvantages of each technique, as well as the postanalysis process. Where appropriate, we
provide pseudocode that will allow readers with some training in computer science to understand
the details of the most often used and cited data−mining algorithms. The emerging field of genetic
network reverse engineering is also introduced here.

Chapter 5. Bio−Ontologies, Data Models, Nomenclature. This chapter addresses possibly the least
exciting but the most pressing bioinformatics need for genomic research: creating and using
comprehensive annotations of gene function, storing and organizing microarray expression data,
and ensuring standardized access to these data. We review current efforts to create formalized
systems of description of gene function and the various kinds of "ontologies" that support these
descriptions. The challenge to design "standardized data models" for the storage of microarraydata
is addressed and the principal contenders claiming to be this standard are reviewed. Naming
schemes—nomenclatures—most applicable to gene expression studies are described.
Nomenclatures, data models, and ontologies are placed in a perspective of the general problem of
analyzing the results of functional genomics experiments. Tools that leverage these standardization
efforts and the on−line published literature are also described.

Chapter 6. From Functional Genomics to Clinical Relevance: Getting the Phenotype Right. Here we
address the process of translating the functional genomics research agenda into one of clinical
relevance. We place in this perspective the value and deficiencies of electronic medical records and
standardized clinical vocabularies. Although by no means comprehensive, we provide the highlights
of the privacy issues (e.g., the implications of the Health Insurance Portability and Accountability
Act, anonymization, cryptographic identifiers, etc.) that are most likely to have an impact on the
clinical application of genomic technologies.

Chapter 7. The Near Future. As the techniques and goals of functional genomics are in rapid flux,
we engage in some short−term forecasting to guide readers planning in this time window.
Microarray technologies being developed and recently released are previewed. In this context, the
problem of comparing expression measurements across generations of microarray measurement
platforms is appraised. More broadly, the different kinds of software required for the successful
functional genomics enterprise are described. Finally, a model to meet the training needs of this
new discipline is outlined.
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Chapter 1: Introduction
The functional genomics "meltdown" is coming. At least that is what we fear is likely to occur with
the confluence of the high expectations engendered by the Human Genome Project and the
prevalence of highly uneven scholarship in the investigations made possible by comprehensive
genomic measurement technologies, such as microarray−based expression profiling. Because the
availability of these technologies has preceded the development of a substantive canon of
appropriate analytic techniques, safe experimental design, and cautionary tales, the quality of these
investigations and the manner in which they have been reported often results in the dissemination
of highly preliminary and flimsy findings. The absence of widespread use of computational and
biological validation procedures associated with these studies has led to many reports that will likely
not be substantiated by follow−up studies. With the rapid decrease in the cost of genomic
techniques, follow−up studies are likely to arise within the next few years. At that time, several
previously well−publicized findings in basic biology, clinical diagnosis, clinical prognosis, and
pharmacogenomic targeting will be found deficient. The inevitable reaction to these unfortunate
developments will be attenuated if the discipline of functional genomics has matured enough by
then to achieve the rigor required.

In this book, we have attempted to address some of the challenges required to begin this
maturational process in the intersection between microarray expression technology, bioinformatics,
and biomedical science. Despite the likelihood of an eventual disappointment and subsequent
retrenchment of the ambitions of microarray applications, we are confident that the development of
systematic approaches to this discipline will ultimately deliver on the exuberant predictions and
promises made over the last 5 years. We hope that our experience (including our own generous
share of mistakes), as communicated here, will help provide the reader with a framework to
participate productively in attaining this goal.

1.1 The Future Is So Bright…

Let us be clear lest the above suggest that we are pessimistic about this field. There are very few
disciplines within biomedical research with as much promise and excitment as functional genomics.
Consider the example of the analysis of large B−cell lymphoma, a deadly malignancy of the
lymphatic system, conducted by Alizadeh et al. [3]. In (a necessarily abbreviated) summary of their
study, the gene expression of the lymphatic tissues of a cohort of patients with the diagnosis of
large B−cell lymphoma was measured using DNA microarray technology. That is, thousands of
genes expressed in these tissues were simultaneously measured in the respective lymphatic tissue
sample of each patient.

When a clustering analysis was performed to see which patients ressembled one another the most,
based on their gene expression pattern, two distinct clusters of patients were found. When the
investigators examined the patients' histories it became apparent that the two clusters corresponded
to two populations of patients with dramatically different mortality rates (illustrated by the survival
curves in figure 4.13, section 4.11).

The implications of these two significantly distinct mortality rates are profound. First, these
investigators have discovered with genomic technologies and bioinformatics analyses a new
subcategory of large B−cell lymphoma, a new diagnosis with clinical significance. Second, they
have generated a tool that provides (pending confirmation in other studies) a new prognosis;
patients can be given much more precise estimates of their longevity. Third, it provides a new
therapeutic opportunity; patients with an expression pattern predicting a poor response to standard
therapy may be treated with different (e.g., much more aggressive) chemotherapy. Fourth, it
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presents a new biomedical research opportunity; what is it about these two subpopulations that
makes them so different in outcome and how can that be related to the differences in gene
expression?

It is rare that a set of measurement and analytic techniques can so revolutionize biomedical
research and clinical practice. It is precisely because the excitement and expectations surrounding
this field are so high that we are compelled to inject a note of skepticism about the measurement
techniques and the analytic methods. Without such skepticism, the scientific method cannot function
and the field will not advance. Nevertheless, even as we have discovered for ourselves significant
drawbacks in genomic methodologies, which we address in this book, we remain convinced that
these problems only represent the transient growing pains of a new field of biomedical investigation.

Who is this book intended for? Answering this question has served as our constant compass
throughout the book's writing. There are three audiences that we have had in mind.

Experienced biologists with limited experience using expression microarrays, or who are
concerned that their current approaches to this field are problematic. For them, this book
provides a systematic approach to using microarrays as a tool to investigate biology. Our
particular goal for this audience is to realize the pitfalls and caveats relating to expression
microarray technologies and their analysis. Also, we intend this book to provide these
biologists with a firm foundation on which they can engage in collaborations with colleagues
formally trained in bioinformatics and biostatistics. We deliberately limited the amount of
mathematical treatment of this material. Where it is present, the reader can skip it without
significantly reducing the comprehension of the subsequent text.

1. 

Experienced informaticians with limited experience analyzing microarray data. We believe
the field of functional genomics to be one of the most fruitful and rewarding for a computer
scientist or other quantitatively trained scientist to enter. It provides a source of challenges,
problems, and data sets that will stimulate basic methodological development while
furthering important goals in the enterprise of biological discovery and the state of the art of
clinical care. For this reason, we emphasize an approach that is driven by the questions of
interest to these latter goals. As a result, this book will not present the fundamental computer
science underlying various techniques (e.g., proofs of the soundness of various
machine−learning algorithms) but will instead illustrate their application to problems that are
challenging investigators in functional genomics. This is not to say that the approach we
have taken is not rigorous; it just eschews details on the methodologies that are available
elsewhere and that we have copiously referenced.

We are convinced that the most productive research projects will be those that involve
intimate collaborations with biologists. This is in contrast to the remote and post hoc analysis
of the outcome of experiments that the bioinformatician has little to do with, but which is
frequently the norm in this discipline. We intend and hope this book can serve as the basis
for collaborations in which the informatician understands the goals of biology in this scientific
enterprise and in which she or he can contribute to the experimental design and analysis as
a first−class member of the research team.

2. 

Students entering the field of Bioinformatics. In our own classes (e.g., Medical Computing
6.872 taught at MIT), we have been gratified to note the emergence of a new generation of
students who are both facile in the use of computers as experimental tools and who have a
broad understanding of the biological sciences. Although this text can be used as the basis
of a course, it is also designed for independent study. For those students, this text is
intended to serve as a rapid introduction to the fields of microarray−driven studies of
functional genomics so that they can become productive researchers even while they pursue
their studies. Indeed, we have had several successful collaborations with undergraduates

3. 
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who have used this material as a launching pad for graduate research or careers in industry.

1.2 Functional Genomics

Now that the human genome has been sequenced (or, more accurately, now that a handful of
human genomes have been sequenced), we are said to be in a postgenomic era [200]. We find this
term confusing ("genome, we hardly knew ye") because in our view, now that we know at least the
draft outline for the genome of multiple organisms, we can begin for the first time to systematically
deconstruct how the genetically programmed behavior of an organism's physiology is related to the
constituent genes that make its individual version of its species' genome. In this deconstruction,
several kinds of biological information are available: DNA sequence, physical maps, gene maps,
gene polymorphisms, protein structure, gene expression, protein interaction effects,[1] and a vast
literature in MEDLINE [129].

As we use it in this book, functional genomics refers to the overall enterprise of the deconstruction
of the genome to assign biological function to genes, groups of genes, and particular gene
interactions. These functions may be directly or indirectly the result of a gene's transcription. Much
of functional genomics has been and will continue to be the kind of hypothesis−driven biological
research pursued for the past decades.

In this book, we address a computationally intensive branch of functional genomics that has
emerged as a result of the practical implementation of technologies to assess gene expression
thousands of genes at a time. The ability to comperhensively measure expression affords an
opportunity to reduce our dependence on a priori knowledge (or biases) and allow the organism to
po in t  us  in  po ten t ia l l y  f ru i t fu l  d i rec t ions  o f  inves t iga t ion .  Tha t  i s ,  we  descr ibe  a
hypothesis−generating effort which, if carefully crafted, can then lead to a highly productive set of
investigations using more conventional hypothesis−driven research. In this we have been inspired
by the work of Arkin et al. [12], as have others. Starting from the raw time−series measurements of
the substrates of glycolysis (see figure 1.1), Arkin et al. were able to computationally reconstruct the
glycolytic pathway (figure 1.2). This reverse engineering of the metabolic pathway without prior
knowledge is in contrast to the decades of exacting hypothesis−driven elucidation of this pathway
by biochemists. It turns out that, as we will discuss later, in experimental design (section 2.1.3), this
metaphor is flawed but it remains an icon for one of our major goals: to use bioinformatics applied to
functional genomics data to create and re−create the kind of biological pathway charts that are
common in most basic biology laboratories.
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Figure 1.1: Time−series data from anaerobic metabolism. The time courses of measured
concentration of the small molecule inputs, adenine monophosphate (AMP), a source of chemical
energy to catalyze reactions) and citrate (a substrate), in the experiments, with the responses of the
concentrations of phosphate (Pi, an inorganic ion) and of the substrates fructose−1,6−biphosphate
(F16BP), dihydroxy acetone phosphate (DHAP), fructose−6−phosphate (F6P),
glucose−6−phosphate (G6P), and fructose−2,6−biphosphate (F26BP). (Derived from Arkin et al.
[12].)
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Figure 1.2: Glycolytic pathway reconstructed ab initio from time−series data. A, The
two−dimensional projection of the correlation metric construction (CMC), defined by Arkin et al., for
the time series shown in figure 1.1. Each point represents the time series of a given species. The
closer two points are, the higher the correlation between the respective time series. Black (gray)
lines indicate negative (positive) correlation between the respective species. Arrows indicate
temporal ordering among species based on the lagged correlations between the their time series. B,
The predicted reaction pathway−derived CMC diagram. Its correspondence to the known
mechanism of glycolysis is high. (Derived from Arkin et al. [12].)
Furthermore, we note that genomic data can be fruitfully exploited even without the assignment of
function: a prognostic test for rejection of transplanted kidneys based on the expression level of
three genes is useful even if the function of those three genes is poorly known or not known at all.
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1.2.1 Informatics and advances in enabling technology

Gene expression detection microarrays are notable not because they can uniquely measure gene
expression. There certainly have been many technologies that have allowed for the quantitative or
semiquantitative measurement of expression for well over two decades. What distinguishes gene
expression detection microarrays is that they are able to measure tens of thousands of genes at a
time and it is this quantitative change in the scale of gene measurement that has led to a qualitative
change in our ability to understand regulatory processes occurring at the cellular level. Figure 1.3
provides perhaps the best motivation for the application of information sciences to the functional
genomics enterprise. Since DNA sequencing was invented 25 years ago, the number of gene
sequences deposited in international repositories, such as GenBank, has grown exponentially,
culminating with the entire human genome being sequenced in 2001. Distinguished from this, the
amount of knowledge about these genes (as measured by the proxy of the number of papers
published in biomedicine) has also been growing exponentially, but at a much slower rate. As
shown, the number of GenBank entries has fast outstripped the growth of MEDLINE. As such, it
serves as a proxy for the large gap that has just opened up between our knowledge of the
functioning of the genome and raw genomic data. And GenBank entries are just a fraction of the
various kinds of data, listed above, generated as part of our investigation of the genome. This
volume of data must somehow be sifted and linked to the biological phenomena of interest. Doing
so exhaustively, reliably, and reproducibly is a plausible strategy only with the application of
algorithmic implementations on computers. This has led to an unprecedented demand for
investigators with the knowledge of successful manipulation and analysis of large data sets. These
skills may come from education and training in computational physics, chemical engineering,
operations research, or financial modeling, but once they are applied to the domain of functional
genomics, they can be collectively described as belonging to the domain of bioinformatics.

Figure 1.3: Relative growth of MEDLINE and GenBank. The industrialization of genomic data
acquisition has created a growing gap between knowledge—of which MEDLINE publications are a
proxy—and the information we have gathered about the genome. Information science applied to this
information (i.e., bioinformatics) is one of the pillars of an international strategy to overcome this
knowledge gap. Cumulative growth of molecular biology and genetics literature (light gray) is
compared here with DNA sequences (dark gray). Articles in the G5 (molecular biology and genetics)
subset of MEDLINE are plotted alongside DNA sequence records in GenBank over the same time
period. (Derived from Ermolaeva et al. [65].)
One reason why the number of known sequences is growing so much faster is the discovery and
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use of many automated techniques, such as automated sequencers and shotgun sequencing
methods. Until the recent advent of gene expression microarrays, we did not have a similar
technique to automate the acquisition of knowledge about these genes' behavior in cellular
physiology. The past 5 years have seen an incredible confluence of disparate technologies, such as
robotics, florescence detection, photolithography, and the Human Genome Project,[2], so that today,
b io log is ts  can  use  RNA express ion  mic roar ray  de tec t ion  techno log ies  to  ob ta in
near−comprehensive expression data for individual cells, tissues, or organs in various states. With
currently available commercial tools, a single experiment using RNA expression detection
microarrays can now provide systematic quantitative information on the expression of 60,000
unique RNAs within cells in any given state. Complementary DNA (cDNA) and oligonucleotide
microarray technology[3] cannot only be used to determine the abundance of RNA transcripts. By
virtue of their broad reach, these measurement platforms permit a large number of exhaustive
comparisons: of transcriptional activity across different tissues in the same organism, across
neighboring cells of different types in the same tissue, across groups of patients with and without a
particular disease or with two different diseases. These platforms can also be used to analyze
complex systems, such as traits with multigenic origins or those linked to the environment. They can
be used in time series to measure how a particular intervention may start a transcriptional program,
i.e., change the expression of large numbers of genes in a reproducible pattern determined by
inherent genetic regulatory networks. With sufficient data, they can be even used to provide insight
into the underlying mechanisms of these genetic regulatory networks.

Nonetheless, the tools to extract knowledge from data collected from all of these types of
experiments are still in their infancy, and novel tools are still needed to sift through the enormous
databases of simultaneous RNA expression to find the true nuggets of related function. The
application of techniques of information science, computer science, and biostatistics[4] to the
challenge of knowledge acquisition from genomic data is commonly known as bioinformatics. This
appellation applies to the quantitative and computational analysis of all forms of genomic data,
including gene sequence, protein interactions, protein folding, and any observable or measurable
phenomenon of interest to the biomedical researcher. The breadth of this commonly used definition
of bioinformatics risks relegating it to the dustbin of labels too general to be useful of which artificial
intelligence, knowledge management, and systems analysis are only among the more recent. In this
book our intent is to be sufficiently specific about the bioinformatics techniques employed that the
matter of a sufficiently broad and yet specific definition of bioinformatics is moot.

Over the past 6 years, several approaches have been developed to analyze microarray−generated
RNA expression data sets. The central hypothesis (or hope) of these methods is that, with improved
techniques in bioinformatics, one can analyze larger data sets of measurements from RNA
expression detection microarrays to discover the "true" biological functional pathways in gene
regulation, and develop more definitive, sensitive, and specific diagnostic and prognostic
characteristics of disease. However, this is only one of many important areas of bioinformatics
addressed in this book. Particularly because we are still in the immediate aftermath of the Human
Genome Project, many of the basic naming and data management practices of functional genomics
remain in flux and are active areas of bioinformatics development. Although this activity is quite
distinct from the analytic efforts touched on above, it currently consumes perhaps the largest
proportion of the bioinformatics community because its resolution is urgent and a sine qua non for
the success of any of the analytic efforts. After all, if we cannot reliably name the same gene in
identical fashion across experiments, if we cannot reliably retrieve expression data from all the
microarray experiments of interest, if we cannot readily access the meaning and function of genes
determined by thousands of researchers, then the whole enterprise of functional genomics will be
crippled if not intractable.

There is a related discipline to bioinformatics—clinical informatics—which refers to the application of
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information science to various aspects of clinical care. Although clinical informatics is not addressed
in this book in detail, in chapter 6 we describe many of the problems that have dogged clinical
informaticians and that will confront bioinformaticians as they attempt to bring their basic science
findings to clinical relevance.

1.2.2 Why do we need new techniques?

A first look at a typical genomic study might cause a quantitatively trained scientist or even a
biologically trained scientist to ask the following, quite legitimate question: Why is this field not
amenable to standard biostatistical techniques? After all, we are trying to understand the
relationship between multiple variables and the mechanisms that the relationships reveal. And there
has been a long history of the development of biostatistical techniques to analyze large studies with
large numbers of cases with many variables to elucidate precisely this kind of question. Specifically,
these studies ask questions such as: What risk factors are associated with heart disease? Does
smoking cause disease? What is the difference in survival between a group treated with one
chemotherapeutic drug versus another? On the surface these questions seem similar to many of
those posed regarding genetic risk factors for acute and chronic disease. Yet a review of the
bioinformatics and functional genomics literature over the past 3 years reveals that most of the
analyses have been performed using techniques borrowed from the computational sciences and
machine−learning communities in particular. Why is this? There are several reasons, including
academic parochialism, but perhaps the most substantive one is the essentially underdetermined
nature of genomic data sets as described below. If we examine figure 1.4, we see sketched out the
fundamental difference between a typical clinical study and a typical genomic study. A high−quality
clinical study will involve thousands to tens of thousands of cases, such as in the Nurses' Health
Study [18] or the Framingham Heart Study [55] over which tens or even hundreds of variables are
measured. In contrast, in a typical genomic study, there are only tens or, exceptionally, hundreds of
cases, but thousands of measured variables.

Figure 1.4: A major difference between classic clinical studies and microarray analyses. The high
dimensionality of genomic data in contrast to the relatively small number of samples typically
obtained results in a highly underdetermined system.
Initially, the low number of cases in functional genomic investigations may have been due to the
high cost of the microarrays (on the order of several thousand dollars per microarray) but
increasingly the scarcity of cases in a typical functional genomics study will relate to the scarcity of
appropriate biological samples. As these experiments involve the measurement of gene expression,
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a particular tissue has to be obtained under the right conditions. This is in distinction to genomic
DNA samples where most blood samples will suffice. Especially in human populations, suitable
tissue samples are relatively rare.[5] Yet even though there are only tens of cases, each case
involves the measurements of tens of thousands of variables corresponding to the expression of
tens of thousands of genes measurable with microarray technology. The result of the large number
of variables compared to the number of cases is that we have highly underdetermined systems.
That is, we are making measurements of very high dimensionality (on the order of tens of
thousands) but we are only providing a small number of cases to explore this high−dimensional
space. Another way to say this is that there are many, many ways in which the variables being
measured could be interrelated mechanistically, based on the relatively small number of
observations. Due to this high dimensionality and the underdetermined nature of these systems,
standard biostatistical techniques do not hold up well because many of the assumptions that
underlie these conventional biostatistical techniques do not hold.[6] We often provide the following
analogy. To solve a linear equation of one variable (e.g., 4x = 5) we only need one equation to find
the value of the variable. To solve a linear equation of two variables (e.g., y = 4x + b), two equations
are required. If we have tens of thousands of variables, but only hundreds of equations, then there
will be thousands of potentially valid solutions. This is the essence of what constitutes an
underdetermined system. In this context, we must use techniques that can maximally inform us of
the relationships between variables of interest (and find out which ones are of interest) despite the
underdetermined nature of the data sets. High−dimensionality data sets have been well−known to
the "machine−learning" community of computer scientists in applications such as automated
recognition of human faces, so it is not surprising that many of the techniques developed by that
community have found their way into the functional genomics enterprise.

[1]For those of you who are unfamiliar with what these are, we touch on defining these terms in
section 1.5 and in the glossary.
[2]Using the common shorthand title for the international public and private effort to determine the
sequence of bases in the human genome.
[3]The characteristics of the various microarray technologies are addressed in chapter 3.
[4]The label applied often seems to be determined more by the training background of the labeler
rather than any fundamental characteristic of the analytic technique.
[5]See chapter 2 for a discussion of which tissues are appropriate for particular experiments.
[6]Although this holds true for most of the biostatistical techniques biologists will have learned in
graduate school, in fairness there has been quite a lot of research by statisticians on the analysis of
underdetermined systems of high dimensionality. Their work has just not found its way into
mainstream biomedical study until recently.

1.3 Missing the Forest for the Dendrograms, or One Aspect of
Integrative Genomics

In the first 2 years of significant publications regarding the large scale application of microarray
technologies, numerous special purpose or adapted machine−learning algorithms were described in
the literature. Self−organizing maps [175], dendrograms [27,63,76], K−means clusters [101],
support vector machines [33,72], neural networks [107], and several other methodologies (borrowed
largely from the machine−learning community of computer science) have been employed. Most of
these have worked reasonably well for the purposes described in the papers. It is one of the central
contentions of this book, however, that the choice of a particular clustering or classification
methodology is secondary to proper experimental design and full knowledge of the properties and
limitations of massively parallel expression analysis in general and those of the specific microarray
technologies employed. This contention does not constitute an overly fastidious approach to
functional genomics but the insight from (often expensive) experience gleaned through our own
mistakes and those of our colleagues and the reported investigations. The bioinformatics technique
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centric approach has been evident in our own collaborations. Often, at the outset of a new
investigation, our collaborators from both the computational community and the biological
community immediately wish to address the questions of which are the appropriate clustering
techniques and which one is "the best." While we certainly recognize that the choice of clustering or
classification technique is important (and we devote chapter 4 to this matter), we are firmly
convinced that it is only one part of a well−designed pipeline that defines a successful exploration of
biology and medicine using microarray technology. This pipeline is diagrammed in figure 1.5 on
page 17. We refer to this functional genomics pipeline throughout the book. We discuss at length
the practicalities of assembling this pipeline in subsequent chapters, but a few characteristics of this
pipeline bear mentioning here:

Figure 1.5: An archetypal functional genomics pipeline. Shown is a simplified view of a functional
genomics pipeline solely involved in expression microarray experiments. Note the interdigitation of
"wet" and "dry" components requiring close multidisciplinary collaboration and some creative
consideration of the value of the individual contributions in this pipeline for a particular experiment
and publication.

Selection of the right tissue. Experiments in functional genomics require selection of the
functionally relevant tissue or cell type. In certain experiments, like those using blood and
solid cancers, the functionally relevant tissue is clear. In other analyses, the functionally
relevant tissue is not so easily ascertainable or acquirable. For example, the clinical
phenotype seen in type 2 diabetes mellitus, or insulin resistance, involves the coordinated
physiological dysfunction of several organs and cell types, including liver, muscle, and fat
cells. Schizophrenia involves a higher−order brain dysfunction, but brain cells are not easily
accessible in humans. For some common diseases like hypertension, it is not clear what the
functionally relevant tissue is. A successful pipeline involves collaboration with a source of
tissue, such as a surgical team, a laboratory with biologically interesting animals, or a
laboratory with cell lines of interest.

• 

Right conditions. Even if the appropriate tissue is selected from the organism of interest, the
conditions under which the tissue is obtained (e.g., number of hours post mortem) can
determine whether or not the investigation is successful. An insulin−sensitive tissue such as
skeletal muscle will have a different characteristic metabolic and expression profile
depending on the glucose and insulin concentrations prior to the extraction of RNA. The time
of day will influence the expression of genes in all tissues which have endogenous circadian
rhythms or that have processes that can be entrained by physiological clocks. Awareness of
these issues and cooperation from a surgeon, pathologist, or technician responsible for

• 
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obtaining the tissue is therefore an essential component to the success of the functional
genomic pipeline.
Extracting RNA, hybridizing to microarray, and scanning. Each of these steps in this "wet"
component of a functional genomics pipeline is susceptible to operator error and is a
potential source of poor or noisy measurements. The RNA extracted may be of poor quality,
the hybridization conditions may vary (e.g., the room temperature), and the settings of the
scanner that produces the digital image of the microarray may vary from one scan to
another. Industrialization and standardization of this component has been the focus of the
more successful and high−quality functional genomics efforts using expression microarrays.

• 

Functional clustering. This "dry" component of the pipeline is often thought to be what
bioinformatics is about. And in fact, it may be at this stage that the algorithmic analysis of an
expression profiling study to detect biologically or clinically meaningful patterns or
associations is the only time a bioinformatician is involved. We will argue throughout this
book that a successful functional genomics pipeline involves the bioinformatician at every
step.

• 

Computational validation. As will be elaborated in this book, there are many reasons to
perform bioinformatics analyses on functional genomics data sets, and many methods can
be used. One unique problem with these types of data sets is that they are "short and wide,"
meaning that many characteristics are measured on relatively few samples. For example,
current microarrays offer the quantitation of up to 60,000 expressed sequence tags (ESTs)
in any given sample, but current costs may limit a single experiment to 10 to 100 samples.
Because of this problem, these data sets are essentially underdetermined, as described on
page 10, meaning that there are many correct ways to mathematically describe the clusters
and genetic regulatory networks contained within them. Thus, some computational validation
is required immediately after the bioinformatics analysis so that computationally sound but
biologically spurious or improbable hypotheses are screened out.

The principal motivation for the screening out of spurious or improbable hypotheses is the
efforts that follow. Each hypothesis generated that passes this step may need to be
validated in a biological laboratory. Some biological laboratories may wish (and may have
the resources) to pursue many hypotheses and can tolerate the eventual refutation of large
numbers of false−positive hypotheses. Other biological laboratories may only be able to
validate a few. Thus, a proper bioinformatics analysis includes a computational validation.
An ideal computational validation does not merely provide a yes or no answer as to the
potential validity of a hypothesis, but instead provides a continuum of validation, or a
receiver−operating characteristic curve. With such a curve, the biologist can select the
desired point of sensitivity or specificity and true and false negatives and positives (see
sections 2.1.4 and 4.12.3).

• 

Biological validation. Most biological questions will not be answered using microarrays.
Instead, the most likely outcome from a functional genomics analysis is the next biological
question to ask. As hypotheses are generated from bioinformatics analyses, biological
validation is crucial to verify these hypotheses. This verification may include, for instance,
making sure a particular set of genes is truly expressed at the proper time and place as
hypothesized, using conventional biological techniques such as Northern blotting and in situ
hybridization.

• 

The multidisciplinary team. In most settings, all of these steps, from acquisition of source
material, to microarray construction, to bioinformatics analysis, to biological verification,
cannot be performed by a single group or laboratory. A successful functional genomics
pipeline brings together resources from many disciplines and of varied backgrounds. Two
anecdotes serve to illustrate the value of this multidisciplinary approach.

• 

We were in the process of analyzing a large number of microarray expression data obtained from
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skeletal muscle for some colleagues interested in muscular dystrophy—a class of genetic diseases
of muscle. They were gratified when our clustering analyses found interactions between
transcriptional factors and contractile proteins that they had discovered just months before using
conventional molecular−biological techniques as well as several new but plausible interactions.
However, because the clustering analyses were exhaustive, they also identified several hormonal
interactions that were not of primary interest to these neuromuscular specialists. Using annotation
tools linking the microarray data to several national databases, it became quickly apparent that
these hormonal interactions were thought to be exclusive to adipocytes (cells constituting the
principal component of fatty tissue) but we had just found suggestive evidence to the contrary. The
multidisciplinary nature of our effort allowed the formulation of well−posed questions directly related
to the interests of the biological investigators and yet kept us open to important hypotheses
generated from the data.

We are participating in a study of the functional genomics of the developing brain using mouse
models. We had computed, using approximately two dozen microarray data sets produced by our
collaborators—developmental biology researchers—a list of approximately 100 genes that
appeared to be involved in the development of a specific region of the brain. Our collaborators were
in the process of selecting a subset of these for biological validation but we were worried about the
outcome of the validation because the data had been derived from entire portions of the brain
whereas the process the developmental biologists were interested in only occurred in a minute
component of the brain. It seemed probable that many of the 100 genes were not specific to the
processes we were studying. Given only the expression data from the microarrays, none of the
bioinformatics techniques were able to further refine or hone the list of 100. Fortunately, the
developmental biologists provided us with the following insight. They knew of one gene g that was
expressed in the tiny area of the brain that they were studying and they had determined empirically
that it was expressed in no other part of the brain. They suggested that we find all those genes in
the list of 100 that behaved very closely to g. We found 10 such genes and our collaborators went
on to successfully validate 8 of them using the techniques of conventional hypothesis−driven
molecular biology. If we had not drawn on the multidisciplinary capabilities of our team for that small
but crucial biological insight, then we would have been stuck with a large list of nonspecific genes of
little relevance to the questions originally posed by the developmental biologists.

When the initial design of the multidisciplinary functional genomics pipeline is given short shrift and
the fundamental limitations of expression microarray technologies misunderstood, the enterprise of
functional genomics appears to approximate the "fishing expedition" that has been the oft−stated
concern of traditional biologists regarding this nascent discipline. Consequently, even if a particular
investigator participates in only a fraction of the pipeline, understanding the safe design of an entire
functional genomics pipeline can maximize the yield of these experiments, or at the very least
produce convincing and reproducible negative results. It is the intent of this book to point the way to
investigations that provide such an understanding.

Because of the dramatically different backgrounds (at least at present) of the different contributors
to the functional genomics pipeline, its social dynamics may be challenging, as described below.
We pay attention to these dynamics because one aspect of an integrative genomics is the
integration of disciplines and experts (the other side will be described before the end of this
chapter).

1.3.1 Sociology of a functional genomics pipeline

Given the requirement for a multiinvestigator, multi−institutional effort, several pragmatic decisions
and realities must be confronted. We describe these in the context of academic collaborations but
analogies to the commercial world are obvious. The first question in academic collaborations around
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the functional genomics pipeline often is: Who will get the credit for the work and for the discoveries
that ensue from a particular functional genomics investigation? More concretely, who will get first
and senior authorships in the publications that report on the discoveries obtained from this
functional genomics discovery pipeline? Will it be the surgeons who obtained the tissue, the
bioinformaticians who performed the cluster analysis, the biologist who runs the microarray facility,
or the clinician who obtained the phenotypic characterization of the patient from whom the tissue
was obtained?

Resolving this issue is nontrivial because of some fundamental human and cultural considerations
of the various types of investigators. Within each discipline, an investigator will tend to see those
outside his or her discipline as performing more of a utility function rather than making a significant
intellectual and creative contribution to the research process. For example, a molecular biologist
might view the bioinformatician as providing cookbook analytic algorithms to winnow out the
relevant findings from a biological system that they have spent time, energy, and creativity in
developing. Conversely, the bioinformatician might view the biologist as a laborer plodding along in
the murky swamps of biological experimentation on which the bioinformatician can then shed light
by virtue of his or her insights into the general principles of automated inference, clustering, and
classification.

For those of us who have labored on both sides of this cultural divide, it is quite clear that there are
plodders and creative geniuses in both fields. Successful collaborations in this arena require
thoughtful recognition of relevant contributions prior to initiating a long−term collaboration around
this strategy. In our own collaborations, we have adopted the following heuristics: If the
bioinformatics techniques used are not novel and the interpretation is rote, then the biologists and
clinicians usually assume first and senior authorships. If the experimental design is innovative and
informed by the nature of the bioinformatics analyses, and the computational techniques have to be
developed or customized, then the bioinformaticians usually take first and senior authorships. Often,
the major contributions are mixed, as when the bioinformatics analyses are novel and the biological
validation steps are creative and arduous, in which case the authorships are split accordingly. In the
end, however trite as it sounds, it is true that nothing substitutes for the collegiality and good will that
arise from mutual respect for different skills and contributions.

1.4 Functional Genomics, Not Genetics

We have noticed, among some of our biological collaborators, a tendency to view the massively
parallel methods of functional genomics as a highly efficient large−scale application of methods that
they have already applied. For instance, gene expression profiling and polymerase chain reaction
(PCR) are all methods that have been used by molecular biologists for decades. What we hope the
reader will obtain from this book is an appreciation of how the near−comprehensive (and soon to be
truly comprehensive) nature of the functional genomics approach as permitted by expression
microarrays changes qualitatively and fundamentally the nature of biological investigation. Before
our potential readers with biological backgrounds become offended by or disgruntled with this
assertion, let us assure them that we present an equivalent critique for the purely computationally
oriented bioinformatists and genomicists in the following section. Functional genomics is not, as
some have portrayed it, a hypothesis−free fishing expedition, nor is it, even more charitably, only a
hypothesis−generating enterprise requiring subsequent biological validation. It is fundamentally
different in that it permits the posing of large questions that are grounded in an essential biological
understanding of a particular domain. Unlike the questions posed in "traditional" genetics or
molecular biology, these questions have less stringent requirements for prior supposition or claims
of the role of a particular gene or metabolite in a biological process. An example of some of the
broad questions that can be asked are:
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Which of all the known genes have regulatory mechanisms that appear to be similar to those
regulated by the sonic hedgehog transcription factor in the cerebellum?

• 

Given the effect of 5000 drugs on various cancer cell lines, which gene singly is the most
predictive of the responsiveness of the cell line to any chemotherapeutic agent?

• 

Given a known clinical distinction, such as that between acute lymphocytic leukemia and
acute myelogenous leukemia, what is the minimal set of genes that can most reliably
distinguish these two diseases?

• 

Is there a group of genes that can serve to distinguish the outcomes of patients with large
B−cell lymphoma that are otherwise clinically indistinguishable on presentation?

• 

What distinguishes the signaling pathways of two of the substrates of the insulin receptor?• 

These questions are important biologically and clinically, and yet they can only be posed reasonably
if they involve a comprehensive view of genomic regulation and involve the use of computational
methods that can efficiently sift through the vast quantities of genomic data generated by the
experiments required to answer these questions. Another way to consider functional genomics is to
view it as serving as a filtered funnel through which these broad questions can be strained. The
residue that remains is high−yield, detailed, and contains particular biological questions that are
answerable by more traditional genetic or molecular biology techniques. This is illustrated in figure
1.6 below. The utility of this metaphor is as follows. The universe of possible participants in any
given biological regulatory mechanism is finite but very large. Even with the most comprehensive
in−depth expertise, a biologist may find be surprised about insights obtained through data mining of
expression patterns, human genome sequences, and often from data obtained from other species.
Without a genomic approach to guide her experiments, this biologist may expend several months in
false leads or alternatively miss an important component to the system under study. Similarly, if the
biologist is looking at a set of genes that are thought to be predictive of a given clinical condition,
such as transplant rejection or cardiac disease, without the comprehensive view brought by
functional genomics, elements of the diagnostic or prognostic procedure, such as the concentration
of a gene transcript or a protein, may be omitted with a concomitant decrease in the sensitivity and
specificity of the prognosis or diagnosis.

20



Figure 1.6: The functional genomics investigation as a funnel for traditional biological investigations.
Broad questions and comprehensive data are the mix in which bioinformatics techniques are filtered
to separate high−yield hypotheses or candidate genes from spurious findings and poor−quality
hypotheses.
1.4.1 In silico analysis will never substitute for in vitro and in vivo

There is little doubt that one of the tremendous accomplishments of the Human Genome Project is
that it has enabled a rigorous computational approach to identifying many questions of interest to
the biological and clinical community at large. [7] However, the danger of a computational
triumphalism is that its makes several dubious assumptions. The first is genetic reductionism: At an
abstract level most bioinformaticians understand that a particular physiology or pathophysiology is
the product of the genetic program created by the genome of an organism and its interaction with
the environment throughout its development and senescence. In practice, however, a
computationally oriented investigator often assumes that all regulation can be inferred from DNA
sequence, based solely on the syntax of its sequence elements. That is, it is assumed that it is
predictable whether a nucleotide change in a sequence will result in a different physiology. We refer
to this as "sequence−level reductionism."

The second dubious assumption is the computability of complex biochemical phenomena. One of
the most venerable branches of bioinformatics involves modeling molecular interactions such as the
thermodynamics of protein folding, and protein−protein and protein−nucleic acid interactions. As
yet, all the combined efforts and expertise of bioinformaticians have been unable to provide a
thermodynamically sound folding pattern of a protein in the heterogeneous solvent environment of a
cell for even as long as one microsecond. Furthermore, studies by computer scientists over the last
10 years [23,114] suggest that the protein−folding problem is "NP hard." That is, the computational
challenge belongs to a class of problems that are believed to be computationally intractable.
Therefore it seems overly ambitious to imagine that within the next decade we will be able to
generate robust predictive models that are able to accurately predict the interactions of thousands
or millions of heterogeneous molecules and the ways in which they modulate the transcription of
RNA and the translation of messenger RNA (mRNA) into protein and the subsequent functions of
these proteins. We refer to this ambition as "interactional reductionism."

This is not to say that models have no useful role in molecular biology or bioinformatics. On the
contrary, they are extremely useful to embody what we currently believe we know about biological
systems. Where the predictive capabilities of these systems break down points to where we should
guide further research. Also, the educational value of such models cannot be underestimated.

The final questionable assumption is the closed−world hypothesis. Both sequence level
reductionism and interactional reductionism are predicated upon the availability of a reliable and
predictive and complete mechanistic model. That is, if a fertilized ovum can follow the genetic
program to create a full human being after 9 months, then surely a computer program should be
able to follow the same genetic code to deterministically infer all the physiological events that are
determined by the genetic code. Indeed, there have been several efforts, such as the E−cell effort
of Tomohita et al. [179], which aimed to provide robust models of cellular function based on the
known regulatory behavior of cellular systems. Although such models have important utility, our
knowledge of all the pertinent parameters for these models appears grossly incomplete today.
These parameters are required to describe intracellular processes, intercellular processes, and the
unimaginably large repertory of possible environmental interactions with both sets of processes.
This incompleteness, and the lack of knowledge of where the boundaries are between the complete
and the incomplete, imply that these models will have behaviors that may diverge substantially and
unpredictably from those that actually occur.
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These caricatured positions of the traditional molecular biologists and the computational biologists
are, of course, overdrawn. When prompted, most of these investigators will articulate the fullness of
the complexities of the analytic tasks of functional genomics. In the conduct of their research or
even in the discussions within their publications, these same investigators will nonetheless often
retreat to the simplifications and assumptions described above. This may be because they take for
granted that their colleagues and readers understand these simplifications, but such unstated
assumptions can often misdirect novices in this discipline.

What we argue for, and hope that this book communicates, is the necessity for a rapid
generate−and−test paradigm that cross cuts repeatedly across the disciplines of genetics,
computational biology, and molecular biology. Operationally, this means that bioinformatics tools
can be used to guide the investigations of an experimental biologist investigating a particular
biological system or disease process. But for even the smallest assumption, rather than relying on
the statistical association or predicted behavior of a system, empirical evidence has to be developed
to support these. It is only in this incremental accretion of evidence that the discipline of functional
genomics can become a science.

Why microarrays? Why focus on microarrays? After all, there are many other ways to impute
function to genes. Using only genomic DNA easily obtainable from a peripheral blood sample or a
buccal smear, genetic epidemiologists can conduct association studies using microsatellite markers
or polymorphisms [43] to associate prognoses, diagnoses, and even biological function with a
particular gene [67,126]. And then there are the more conventional genetic techniques of transgenic
and misexpression whole−organism models of the function of various genes. Even more recently,
the feasibility studies for proteomic assays suggest that in the future we will directly be able to
assess changes in protein concentration at the cellular level.

In contrast to linkage and association studies, microarray studies are designed in principle to
measure directly the activity of the genes involved in a particular mechanism or system rather than
their association with a particular biological or clinical feature. An association−linkage−genetic
epidemiology study relies upon a long indirect probabilistic causal chain: that a change in DNA
sequence results in a change in gene regulation or protein structure, resulting in a change in cellular
physiology measurable as a change in a whole−organism profile (e.g., the human phenotype). For
some changes in genomic sequence, particularly in the instances of multigenic regulation, the
effects may be so small that any conceivable population study may not be able to detect them.[8]

Also, the cost of screening the genome of sufficiently large populations to achieve adequate
statistical power has prohibited all but the most focused association studies (although this is likely to
change). Unlike the current state of art and engineering of large−scale proteomic assay systems,
gene microarrays are currently affordable and within many applications have acceptable
reproducibility and accuracy.

Another aspect of an integrative genomics Notwithstanding these apparent advantages of
expression microarray studies, as we discuss in sections 1.5.3 and 1.5.2, there are several kinds of
information that we are missing by not including such measurements. Our decision to restrict the
scope of this book to the exploration of functional genomics and genomic medicine from the
perspective of microarray technology is then largely a pragmatic one. Expression microarrays are
sufficiently well engineered and cost−effective to allow thousands of researchers to productively
employ them to drive their investigations. If, in the future, as we expect, massively parallel
measurements of individual proteins becomes cost−effective, large−scale, and highly reproducible,
then we will certainly expand the analysis to address these methodologies. The same will be true
when high−resolution (i.e., every kilobase) genome−wide scans of hundreds of individuals will
become economically feasible for most clinical research studies. Current estimates have these
technologies available on the genomic and population scale within 5 years. A well−prepared
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genomic investigator will have prepared the pipeline to take advantage of all these measurement
technologies.

From the computational perspective, the measurement of any analyte, whether it be an inorganic
constituent of serum, an RNA transcript, or a protein, are all simply point measurements of variables
corresponding to the total state of the cell. Likewise, all clinical measurements (e.g., height, blood
pressure) and history (e.g., age of menarche, time of cancer diagnosis) are point measurements
corresponding to the total state of the organism (e.g., human). It is only in the important details of
the quality and meaning of these measurements that they differ. This is said both with tongue
planted firmly in cheek and in all seriousness.

And indeed, it is this other aspect of an integrative genomics to include as many modes of data
measurement as are available. Each mode reflects another aspect of cellular and organismal
physiology each with its own set of specificities and sensitivities with respect to a phenomenon or
process of interest. The role of bioinformatics in an integrative genomics is to both provide the glue
bringing together all kinds of genomic and phenotypic data and the means to extract knowledge (or
at least high−yield hypotheses for subsequent testing) from them in an efficient, large−scale, and
timely fashion. It is also the inspiration for the title of this book.

[7]Although even the most basic of the original conclusions, stated in the publications heralding the
completion of the draft of the human genome, the order of magnitude of the number of genes in the
human genome, now seems to be again in contention.
[8]That is, there would be insufficient numbers of individuals with the necessary constellation of
phenotypes across the entire human population. At the same time we recognize that there are
several diseases, such as sickle cell anemia, where the change of one base in the hemoglobin gene
results in a severe and unsubtle disease phenotype.

1.5 Basic Biology

This section is meant solely for the quantitatively trained scientist who knows essentially none of the
biology developed over the last three decades. For those of you who need a significant refresher in
molecular biology we list several good introductory texts and on−line resources (table 1.1). So we
start from the beginning. In almost all cells making up a living organism, there is believed to be an
identical set of codes describing the genes and their regulation. This code is encoded as one or
more strands of the deoxyribonucleic acid molecule: DNA. That is the same in almost every cell in
the human body.[9] For instance, a liver cell and a brain cell have the same DNA content and code
in their nucleus. What distinguishes these cells from one another is that portion of their DNA that is
transcribed and translated into protein, as described below.

Table 1.1: Molecular biology primers

Genomes.
T. A. Brown & Austen Brown. New York, Wiley−Liss,
1999.

• 

Human Molecular Genetics, 2nd edition.
Tom Strachan & Andrew Read. New York, Wiley−Liss,

• 
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1999.
Primer on molecular genetics
http://www.bis.med.jhmi.edu/Dan/DOE/intro.html.

• 

Primer on genomics with a commercial flavor
http://www.biospace.com/articles/genomics.primer.cfm

• 

Introductory biology course at MIT (7.01) hypertext
book
http://www.esg−www.mit.edu:8001/esgbio/701intro.html

• 

The entire complement of DNA molecules of each organism is also known as its genome. The
overall function of the genome is to drive the generation of molecules, mostly proteins, that will
regulate the metabolism of a cell and its response to the environment, as well as provide structural
integrity.

Structure of DNA Each molecule of DNA maybe viewed as a pair of chains of the nucleotides
adenine (A), thymine (T), cytosine (C), and guanine (G). Moreover, each chain has a polarity, from
52 (head) to 32 (tail). The two strands join in opposing polarity(52 binds to 32) through the
coordinated force of multiple hydrogen bonds at each base−pairing, where A binds to T and C binds
to G. [10]

DNA is able to undergo duplication, which occurs through the coordinated action of many
molecules, including DNA polymerases (synthesizing new DNA), DNA gyrases (unwinding the
molecule), and DNA ligases (concatenating segments together).

Transcription of DNA into RNA In order for the genome to direct or effect changes in the
cytoplasm of the cell, a transcriptional program may be activated for the purpose of generating new
proteins to populate the cytosol—the heterogenous intracellular soup of the cytoplasm. DNA
remains in the nucleus of the cell, while most proteins are needed in the cytoplasm of the cell,
where many of the cell's functions are performed. Thus, DNA is copied into a more transient
molecule called RNA. [11] A gene is a single segment of the coding region that is transcribed into
RNA. RNA is generated from the DNA template in the nucleus of the cell through a process called
transcription.[12]

The RNA sequence of base pairs generated in transcription corresponds to that in the DNA
molecules using the complementary A−T, C−G, with the principal distinction being that the
nucleotide uracil is substituted for the thymine nucleotide. Thus, the RNA alphabet is ACUG instead
of the DNA alphabet ACTG. Each cell contains around 20 to 30 pg of RNA, which represents 1% of
the cell mass. The RNA that codes for proteins is called messenger RNA, and the part of the DNA
that provides that code is called an open reading frame (ORF). When read in the standard 52 to 32
direction, the portion of DNA before the ORF is considered upstream, and the portion following the
ORF is considered downstream.

The specific determination of which genes to transcribe is determined by promoter regions, which
are DNA sequences upstream of an ORF. Many proteins have been found containing parts that
bind to these specific promoter regions, and thus activate or deactivate transcription of the
downstream ORF. These proteins are called transcription factors.[13]

A diagram of the genetic information flow, from DNA to RNA to protein, is illustrated in Figure 1.7
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Figure 1.7: Flow of genetic information, from DNA to RNA to protein. This simplified diagram shows
how the production of specific proteins is governed by the DNA sequence through the production of
RNA. Many stimuli can activate the specific transcription of genes, and proteins can play a wide
variety of roles within or outside cells. Note that even in this simplified model, it is obvious that since
we are currently able to (nearly) comprehensively measure only gene expression levels, we are
missing comprehensive measurements of protein modification, activity, transcriptional stimuli, and
many other components of the state of a cell.
Prokaryotic and eukaryotic cell types Although there are many taxonomies one could use, we
can essentially divide the world of organisms into two types: eukaryotes, whose cells contain
compartments or organelles within the cell, such as mitochondria and a nucleus; and prokaryotes,
whose simpler cells do not have these organelles. Animals and plants are examples of eukaryotes,
while bacteria are prokaryotes. Most prokaryotes have a smaller genome, typically contained in a
single circular DNA molecule. Additional genetic information may be contained in smaller satellite
pieces of DNA, called plasmids.

The structure and processing of RNA transcripts Eukaryotic genes are not necessarily
continuous; instead, most genes contain exons (portions that will be placed into the mRNA) and
introns (interruptions that will be spliced out). Functions have been recently discovered for introns,
such as promoter−like control of the transcription process. Introns are not always spliced
consistently; if an intron is left in the mRNA, an alternative splicing product is created. Various tissue
types can flexibly alter their gene products through alternative splicing. [14]

Before coding RNA is ready as mRNA, the pre−mRNA must be processed.[15] In eukaryotes, after
the splicing process, the generated mRNA molecule is actively exported through nuclear pore
complexes into the cytoplasm. The cytoplasm is where the cellular machinery, in particular the
ribosomal complex,[16] acts to generate the protein on the basis of the mRNA code. A protein is built
as a polymer or chain of amino acids, and the sequence of amino acids in a protein is determined
by the mRNA template. The mRNA provides a degenerate coding in that it uses three nucleotides to
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code for each of the twenty common naturally occurring amino acids that are joined together to form
the polypeptide or protein molecule. With three nucleotides there can be 43 possible combinations
for a total of 64 combinations. Consequently, several trinucleotide sequences (also known as
codons) correspond to a single amino acid. There is no nucleotide between codons, and a few
codons represent start (or initiation) and stop (or termination).[17] The process of generating a
protein or polypeptide from an mRNA molecule is known as translation.

As an example, if an RNA transcript had the nucleotide sequence

GCT TGC AAG GCG

(the spacing and grouping by three, which obviously is not visible in the RNA transcript, was added
to make this easier to read), the first three nucleotides would code for this chain of amino acids

Alanine Cysteine Arginine Alanine

Note that both the initial GCT and the final GCG code for alanine; because of the degenerate coding
mentioned above, there are four codes for alanine in the standard genetic code.

Most mRNA has a terminating poly−A tail. This terminal sequence makes it easy to pick out the
labeling reactions that are used before hybridization to DNA microarrays, described in section 3.1.

Processing of amino acid chains Once the protein is formed, it has to find the right place to
perform its function, whether as a structural protein in the cytoskeleton, or as a cell membrane
receptor, or as a hormone that is to be secreted by the cell. There is a complex cellular apparatus
that determines this translocation process. One of the determinants of the location and handling of a
polypeptide is a portion of the polypeptide called the signal peptide. This header of amino acids is
recognized by the translocation machinery and directs the ribosomal−mRNA complex to continue
translation in a specific subcellular location, e.g., constructing and inserting a protein into the
endoplasmic reticulum for further processing and secretion by the cell. Alternatively, particular
proteins may be delivered after translation and chaperones can prevent proper folding until the
protein reaches its correct destination.

Transcriptional programs Initiation of the transcription process can be caused by external events
or by a programmed event within the cell. For instance, the piezoelectric forces generated in bones
through walking can gradually stimulate osteoblastic and osteoclastic transcriptional activity to
cause bone remodeling. Similarly, heat shock or stress to the cell can cause rapid change or
initiation of the transcriptional program. Additionally, changes in the microenvironment around the
cell, such as the appearance of new micro− or macronutrients or the disappearance of these, will
cause changes in the transcriptional program. Hormones secreted from distant organs bind to
receptors which then directly or indirectly trigger a change in the transcriptional process.

There are also fully autonomous, internally programmed sequences of transcriptional expression. A
classic example of this is the internal pacemaker that has been found with the clock and per genes
(see figure 1.8 below) where, in the absence of any external stimuli, there is a recurring periodic
pattern of transcriptional activity. Although this rhythmic pattern of transcription can be altered by
external stimuli, nonetheless it will continue initiating this pattern of transcription without any
additional stimuli.
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Figure 1.8: Genetic machinery of the circadian rhythm. Current molecular model of rhythm
generation in Drosophila, from [191]. The succession of events (A–F) occur over the course of
approximately 24 hours. A, CLOCKBMAL heterodimers bind the per and tim promoters and activate
mRNA expression from each locus; CLOCKBMAL may also activate transcription of other
circadian−regulated genes (not shown). B, per and tim mRNA are transported to the cytoplasm and
translated into PER and TIM protein, respectively. C, Regulation of protein levels occurs by two
mechanisms: DBT protein phosphorylates and destabilizes PER, and light destroys TIM. Light
during the early subjective night can phase−delay the clock. Small "blobs" indicate degraded
proteins. D, PER and TIM levels slowly accumulate during the early subjective night; TIM stabilizes
PER and promotes nuclear transport. E, PER and TIM dimers enter the nucleus and inhibit
CLOCKBMAL−activated transcription. F, Protein turnover (combined with the lack of new PER and
TIM synthesis) leads to derepression of per and tim mRNA expression; the cycle begins again (A).
Light during the late subjective night can phase−advance the clock.
Finally, there are pathological internal derangements of the cell which can lead to transcriptional
activity. Self−repair or damage−detection programs may be internal to the cell, and can trigger
self−destruction (called apoptosis) under certain conditions, such as irreparable DNA damage. As
another example, there may be a deletion mutation of a repressor gene causing the gene normally
repressed to instead be highly active. There are many clinical instances of such disorders, such as
familial male precocious puberty [161] where puberty starts at infancy due to a mutation in the
luteinizing hormone receptor. This receptor normally activates only when luteinizing hormone is
bound, but with the mutation present, activation does not require binding.

1.5.1 Biological caveats in mRNA measurements

There are several desiderata that should be understood about transcription in order to better
understand the limitations of the gene profiling techniques.

27



The set of protein−coding RNA, otherwise known as the transcriptome, should be viewed as
a pool of mRNA. Even at equilibrium, each type of mRNA is degraded at its specific rate.
New transcription provides additional mRNA to replace those being degraded, maintaining
the levels. Thus, a transcriptional program should more accurately be viewed as a change in
the transcriptome. In addition, just because a particular mRNA is seen in the transcriptome,
it does not necessarily imply that the mRNA is about to be translated. Similarly, presence of
a particular mRNA in the transcriptome does not mean that mRNA was recently transcribed.
To determine what genes may be in the process of being translated, one can specifically
look at polyribosomal mRNA, or that mRNA found in the presence of ribosomes. To
determine which genes are currently being transcribed and processed, one can construct
studies looking for pre−mRNA levels instead of mRNA levels (i.e., by finding intronic splice
sites, etc.).

• 

mRNA can be transcribed at up to several hundred nucleotides per minute but may be
transcribed at much slower rates. In eukaryotic organisms, genes can take many hours to
transcribe. For instance, a gene found in muscle, dystrophin, can take up to 20 hours to be
transcribed. The lifespan of an mRNA molecule from initiation of transcription to ultimate
degradation is a complex function of the rate of transcription, the stability of the particular
mRNA molecule, and changes in its processing due to other cellular events, whether
internally or externally initiated. Gene expression measurements, as performed by
microarrays, measure the concentration of each mRNA as a snapshot at a single point of
time or relative to another sample of mRNA. If the transcription of two genes is
simultaneously stimulated and proceeds at the same rate, but the mRNA samples have
different lifespans, then the expression measurements (and downstream protein production)
from these two genes can be quite divergent.

• 

Proteins perform most cellular functions. The lifespan of proteins is at least as variable as
that of mRNA. Consequently, measurements of gene expression (i.e., mRNA measurement)
may not accurately correspond to the concentration or activity of the protein for which it
codes. This should be a caution to any investigator imputing function to a gene based solely
on gene expression patterns.

• 

The mRNA generated from the transcription of a gene may differ depending on which exons
and introns are or are not spliced into the mRNA molecule. These alternate splicing products
are mRNA molecules with divergent sequences. Therefore, measurements of mRNA that
are designed to measure only one of these alternate splicing products will provide
incomplete if not misleading information.

• 

The genetic basis for organismal diversity is due in large part to differences in sequences,
also known as polymorphisms, of each gene. Most of these polymorphisms differ from one
another by one nucleotide and are known as single nucleotide polymorphisms (SNPs). Due
to the small portion of the genome coding for proteins and to redundancy in the mRNA code,
described on page 27, only some SNPs will result in differently constructed proteins. If a
gene expression measurement technology is highly specific for a particular SNP, then other
variants will not be measured. When we consider that the Human Genome Project to date
only includes the sequence of handfuls of individuals, the implications of such measurement
specificity become apparent. Nonetheless, as common SNPs become documented for each
gene, it is likely that successful expression measurement techniques will measure each of
them.

• 

Despite these caveats, it remains that gene profiling studies have proven to be remarkably robust in
describing the functional grouping and coordinated behavior of genes. The reasons for this are
discussed in section 2.2, page 60.
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1.5.2 Sequence−level genomics

Sequencing or genotyping the genome of individuals allows the characterization of what
distinguishes the hereditable material of each individual from that of others. By matching differences
in phenotype (e.g., blood pressure, adult height) between individuals and this genomic
characterization (i.e., in association studies) genetic epidemiologists are able to impute these
phenotypic differences to a small span of the genome. The smallness of the span is a function of
the spatial resolution with which the genomic characterization occurs. Although there is controversy
around what constitutes sufficient resolution, there is some consensus that genomic markers such
as SNPs spaced every thousand bases will be sufficient to unambiguously resolve the span of the
genome associated with a phenotypic difference to a single gene [112]. Currently, the cost of a
single genotype is around $0.50 and so the cost of a high−resolution genome scan of an individual
is on the order of magnitude of $1 million. At this cost, only a very few institutions can afford a
comprehensive study of a population. If the recent past is to be a guide, the cost of genotyping is
likely to drop by several orders of magnitude well within a decade, at which point genome−wide
scans of populations will become economically feasible.

The kind of information that these studies will provide includes the contribution of particular
polymorphisms to changes in phenotype, presumably via changes in gene function, pattern of
expression, or both. Currently, expression microarrays capture information about gene
polymorphism poorly, if at all. Presently shipping microarrays typically code for a canonical "normal"
gene sequence. Departures from this sequence will result in changes in the intensity reading
reported by any of the currently employed microarray platforms, as will become obvious after
reading the chapter on measurement techniques (chapter 3). Undoubtedly, in the next 5 years, the
continued geometric increase in the complexity and density of expression microarrays will allow
specific assaying for all common and all clinically significant polymorphisms. Until then, however,
polymorphisms will be a source of "noise" or unexplained variation. Functional genomics
investigations designed to elucidate the role of particular polymorphisms in phenotypic mechanisms
or phenotypic variation are best conducted using methods other than RNA expression detection
microarrays, such as high−throughput sequencing and genotyping. These latter techniques are
beyond the scope of this text (see [43, 112] for an excellent survey of sequencing and genotyping)
and therefore this particular avenue of functional genomics will not be addressed below except
tangentially.

1.5.3 Proteomics

There is a good deal of enthusiasm at present about the emerging discipline of proteomics. The
promise of proteomics is that we will be able to measure, in a similarly comprehensive and parallel
fashion to RNA microarray measurements, the concentrations of proteins present in a particular
cellular system. In a very abstract sense, for the purely computational bioinformatician, the field of
proteomics does not harbor any particular novelty in that all it provides is another 100,000 variables,
or more, to describe the state of cellular processes. In that perspective, a proteomics data set
reduces simply to another array that has distinguishing noise characteristics (i.e., sources of
biological and measurement variability as described in section 3.2.5) and is just as amenable to the
clustering and classification techniques of chapter 4 as any set of microarray expression
measurements. Less abstractly, however, proteomics offers a set of insights that are quite different
and divergent from those of expression microarrays. The assumption underlying expression
microarray measurements is that by capturing the patterns of expression management, we will
capture the basic irregulatory rhythms of the cell [34]. Although these assumptions may hold at
times and have done remarkably well in helping biologists elucidate some fundamental biology and
to classify clinical phenomena, there are several persuasive reasons why these assumptions should
not always hold. First, we know that most of the effector molecules in cellular metabolism are
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proteins. To the extent that the timing of protein synthesis and the half−life of proteins is not closely
coupled to that of RNA expression, the assumption of the representativeness of RNA levels does
not hold. As outlined in section 1.5, these assumptions do not hold in many instances. Nonetheless,
in proteomics, we will be bedeviled by a new set of assumptions that will be equally problematic and
challenging. Assuming that we have high reproducibility and compact systems for assessing the
concentration of tens of thousands of proteins, we will be faced with the following challenges:

Similar concentrations do not imply co−regulation. Given that proteins have hugely different
half−lives, even within a single cell (e.g., a structural protein in a bone osteoblast and a
parathyroid hormone receptor in the same cell), then the concentrations of protein molecules
in a cell may only remotely reflect joint regulation. This problem also haunts the analysis of
RNA expression microarray data because of the wide range of the stability−degradation rate
of mRNA.

• 

Conversely, repeatedly different concentrations of two proteins imply co−regulation. At any
given sampling time, the two proteins could have quite variable concentrations and different
mutual relationships. Yet, there is nothing about this to preclude important functional
interactions between these proteins.[18]

• 

Localization heterogeneity. Unlike transcription of genes, which occurs within the nucleus,
protein activity has very distinct and heterogeneous functional significance in different parts
of the cellular compartments, and therefore an essential part of understanding protein
function and regulation from proteomic data wil l  require detailed localization to
subcompartments of organelles in order to be meaningful. This problem also exists with
RNA expression microarray data, because of the differing biological implications of RNA
concentrations measured before splicing, after splicing in the cytoplasm, and during
translation.

• 

These challenges of proteomics will eventually be addressed by novel ways of looking at protein
activity over time and in different spatial locations. Nonetheless, at present, the basic mechanism for
cheaply and reliably obtaining large numbers of parallel measurements of protein activity have yet
to be worked out and industrialized, so that these developments are not likely to occur on a large
scale for at least 1 or 2 years. When these challenges have been resolved, then indeed the arrays
of proteinomic data will be amenable to the same techniques of analysis as described in this book
for RNA expression. For thoughtful and comprehensive insights into the challenges of proteomics
and data analytic techniques, we refer the reader to the following papers [25,69,141] and websites
http://www.expasy.ch/, http://www.hip.harvard.edu/.

[9]There are several exceptions to this rule, such as mature red blood cells, which lack nuclei and
therefore the organism's genome, and gametes (spermatozoa or ova), which have half the usual
complement of DNA. However, for the purposes of this overview, the above generalization will
suffice.
[10]These pairings are present in all DNA and are the most thermodynamically stable of all possible
pairings of nucleotides, which accounts for the high specificity with which complementary strands of
nucleotide polymers bind to each other.
[11]That portion of the entire DNA molecules that is transcribed into RNA is called the coding region.
[12]Transcription involves unwinding a DNA molecule so that the particular gene that is to be
transcribed is sufficiently exposed to the transcriptional machinery, notably RNA polymerase.
[13]Not all RNA codes for proteins, however. In fact, only 4% of total RNA is made of coding RNA. Of
the noncoding RNA, ribosomal RNA (rRNA) and transfer RNA (tRNA) are used in various
components of the protein translational apparatus mentioned below, and are not themselves
translated into proteins. Eukaryotes also contain small nuclear RNA (snRNA), which is part of the
splicing apparatus (see below); small nucleolar RNA (snoRNA), which is involved in methylation of
rRNA; and small cytoplasmic RNA (scRNA), which can play a role in the expression of specific
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genes.
[14]In fact, some cells can use the ratio of one alternative splicing to another to govern cellular
behavior.
[15]Modifications to the RNA include the addition of a cap at the 52 end and a tail made of repeated
adenine nucleotides (the poly−A tail)
[16]A complex containing hundreds of proteins and special−function RNA molecules.
[17]There are notable exceptions: the code for the naturally occurring amino acid selenocysteine is
identical to that for a stop codon, except for a particular nucleotide sequence further downstream.
[18]One way to circumvent this problem is with multiple serial measurements of all proteins and then
to subject them to a dynamics analysis.
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Chapter 2: Experimental Design

2.1 The Safe Conception of a Functional Genomic Experiment

Experimental biologists and biomedical scientists who are considering the use of microarrays in
their research programs have often asked us questions of the following form: "How do I best design
an experiment with the following mutant mouse?", or, "We have a budget for 20 microarrays to
analyze this system. How can we complete the experiment within budget?" Unlike the typical
biomedical study design, many of these investigations that the experimentalist are contemplating
are driven not by the testing of a particular hypothesis, but by the hope of generating hypotheses
that will then lead to a directed and relevant experiment that will subsequently yield an interesting
biological or biomedical insight.

We find it even more challenging when we are asked secondary questions related to the
subsequent microarray data analyses such as, "What is the right machine−learning technique or
clustering technique to apply to a set of data to best obtain an answer about [some biological
mechanism]?" The questioner often goes on to ask whether one particular software package works
better than another, is more reliable, or whether it is worth its cost. We view these questions as
well−intentioned but fundamentally flawed and ill−posed. Although a particular machine−learning
algorithm may be slightly superior to another in one set of circumstances (see section 2.2.2 on the
relative merits of different clustering algorithms), the key to a successful functional genomic
investigation is to start with an experimental design that maximizes the possibility of observing gene
expression patterns that are relevant to and informative of the biological aspect or question under
investigation. If the experimental design is such, then most of the common machine−learning
algorithms will reveal those patterns.

So how does one proceed to an effective experimental design for the expression of thousands of
genes in order to, hopefully, answer a biological question? We have found that it useful to frame our
answers within the concepts of experiment design space and expression space. Let us start with the
experiment design space.

2.1.1 Experiment design space

Experiment design space is the space of potential combinations of stimuli or conditions to which one
can subject the regulatory apparatus of the genome. These stimuli include exposure to
pharmaceutical agents such as mitogens, environmental effects such as temperature differences,
withdrawal of nutritional sources, overexpression of a particular gene such as a transcriptional factor
in a transgenic animal, or conversely, an engineered misexpression or "knockout" model. Other
common experimental conditions include the passage of time, such as from a newborn to an old
mouse; the observation of the environment (organisms from one particular condition vs. another);
the observation of organismal processes (organisms with a particular morphology, or afficted with a
particular pathophysiologic condition vs. another); physical manipulation of the cell membrane;
exposure to infectious agents; and changes in osmotic conditions, all of which can potentially affect
the genomic regulatory mechanisms which maintain cellular existence and the regulation of the
cellular response to the environment.

Experimental conditions can be represented as combinations of values on several scales:

Binary scales, e.g., the presence or absence of a diagnosis.• 
Continuous scales, e.g., such as the gradients of exposure to a chemical. These can have
value ranges, say, 10.0, 1.0, 0.1, 0.01, representing the chemical concentration or 0, 5, 10,

• 
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15, 20, representing time in minutes from the initial state.
Unordered discrete scales, e.g., the type of mutant mouse model created or which of the
multiple mammalian muscle tissue types were sampled.

• 

When different experimental conditions from these different scales are combined, then the
experiment can be described as being located in a particular locus of the multidimensional
experiment design space. Shown in figure 2.1 below is the simple example of an experimental
space over three sets of conditions. In this case, the first dimension represents whether the mouse
model being studied is an irs1 [138] knockout, an irs2 knockout [192], or a wild−type mouse. The
insulin receptor signaling proteins irs1 and irs2 are thought to be part of the signaling cascade
through which multiple cellular events[1] are triggered upon binding of insulin to the cellular receptor.
The "knockout" is an engineered mouse in which a particular gene is no longer sufficiently
expressed. The second dimension is the amount of insulin to which the mouse circulatory system is
exposed. The third dimension represents the three types of mouse tissues being studied in this
particular set of experiments, namely, the liver, brain, and fatty tissue. Each of these tissues has
distinct metabolic responses to insulin exposure. Within this three−dimensional experiment design
space, each set of possible experiments can be uniquely located. This notion obviously generalizes
to the much larger number of possible dimensions in any experimental system. Note that the first
and third dimensions have unordered discrete scales, whereas the second dimension is
continuously scaled.

Figure 2.1: Three experiments within the multi−dimensional representation of experiment design
space. Experiment design space defines all the possible stimuli or conditions to which a particular
biological system could be subjected. Shown here is an experiment design space that is concerned
with insulin signaling in different tissues, in different mouse "knockout" models, with different levels
of insulin.
A functional genomic study might involve a trajectory across the experiment design space where the
mouse models are studied across multiple insulin levels and multiple tissues. As the number of
experimental dimensions increases, the number of experiments required to cover the experimental
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design space grows exponentially. However, the concept of an experiment design space by itself
does not suffice to determine which kind or number of experiments is adequate to assess the
genomic physiology of a tissue or system.

2.1.2 Expression space

Now that we have defined the experiment design space, we define the expression space to be the
space of potential expression values of all genes in a given genome. In the context of microarray
measurements, this is a large multidimensional space—with each dimension corresponding to a
single gene—and it can be immediately partitioned into several overlapping subspaces. For
example, coordinated gene expression measurements made from normal muscle tissue under
normal conditions can be represented by a subspace of expression space which will most likely
have a nonempty intersection with the subspace of coordinated gene expression measurements
made from diseased muscle tissue. We often repeat mantra−like to ourselves the phrase "A cell is a
cell is a cell," by which we mean that in order to survive as living and organized entities, most cells
share a large repertory of biological processes, whether they be components of muscle tissue, liver
tissue, or white blood cells. That is, the expression subspaces of most cell types have significant
overlap.

Expression space contains clues about the interactions between two or more clusters of genes. As
an example, we start with the simple case of three arbitrary genes: insulin−like growth factor I
(IGF−1), insulin−like growth factor binding factor−1(IGF−BP1), and fibroblast growth factor 2
(FGF2). The regulatory relationship between these three genes[2] is, in some tissues, that one gene
partially determines the expression level of the other two. This will cause the three genes to move in
a coordinated fashion across the range of their respective possible values. That is, if this is a
particularly tight regulation system, then the expressions of this triplet will only be found in a small
subspace of all possible loci of the expression space. If this were a loosely regulated or unregulated
system, it is possible that the gene expression values might be found in all parts of the expression
space, as shown in figure 2.2 below. The totality of the potential loci that these genes can occupy
constitutes the potential set of all coordinated gene expression levels, or expression space. The
subset of the expression space wherein a cellular system has its expression under all stimuli is
called the transcriptome [41, 184]. More precisely, the transcriptome encompasses the expression
space of all putative 30,000 genes in the human genome (or 100,000 gene products if current
alternative splicing estimates are correct). Each point in the human transcriptome corresponds to
the possible values that each gene's expression might attain under any physiological or
pharmacological stimulus.
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Figure 2.2: Expression space in which gene expression is loosely versus tightly coupled. If genes
are tightly coupled in the expression space, they will tend to occupy a small subspace of expression
space over any set of experiments. If, however, these genes are loosely coupled or even causally
unrelated, then their expression levels will have little relation to one another and therefore tend to be
scattered over a greater volume of the expression space.
The meta−goal of the experimentalist/investigator then is to define the experiment design space that
provides the best and most complete picture of the entire transcriptome or a subset of the
expression space of interest. This is the point in experimental design where a great deal of
domain−dependent knowledge, i.e., specific or a priori biological knowledge, is of significant utility.
The investigator must ask herself or himself: "What is the minimal set of experimental conditions,
i.e., the smallest subspace of the experiment design space, that will cause the largest set of
relevant subspaces of the expression space to be sampled?" In order to answer this question, the
investigator must first understand how each experimental condition could potentially affect the
expression of potentially interesting genes and be able to quantify its effect. Second, the
investigator must consider all possible subspaces or interactions between genes that are of interest.
For example, let us say that we are only interested in the interactions between IGF−1 and IGF−BP1
in the example earlier in the section and we wish to determine how the relationship between these
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two genes changes under both physiological and pharmacological conditions. Then we would obtain
those sets of experiments in the experiment design space which would most likely cause one or
both of these genes to be expressed over the broadest range of their possible values so that all the
evidence of the interactions would be captured, i.e., the subspace of experiments that covers the
largest plane in the IGF−1 and IGF−BP1 expression subspace. A researcher might be interested in
the signaling mechanisms of IGF−1 once it has bound to IBF−BP1 and how it affects the liver's
expression of other genes. These genes may code for many proteins involved in postreceptor
signaling, including possibly IGF−BP1 itself. With a finite budget and a finite source of tissue or
animals, the investigator will have to choose between alternative strategies. A "mutant screening"
strategy might be to assay expression levels in the liver over a set of knockout mice in which each
element of the set constitutes a knockout of a different putative element of the IGF−1 signaling
pathway, whereas a "physiological stimulus" strategy, would be to take a single element of the set
(one of the knockout strains or a wild−type animal) and subject it to a sequence of different
concentrations of extracellular IGF−1. Determining which of these alternatives provides the best
exploration of the expression space will require an understanding of whether the range of mutants
or physiological stimuli engages the portion of the genetic machinery that is relevant, and how close
to the normal homeostatic behavior or pathological behavior of interest is the experiment intended
to explore.

Figures 2.3, 2.4, and 2.5 illustrate the pitfalls of insufficiently exercising the regulatory mechanisms
of gene expression. In figure 2.3, we observe the joint behavior of two genes in which there exists a
strong component of randomness in the relationship between the two genes—as evident from the
low Pearson's correlation coefficient that is calculated between these two genes within the current
range of expression levels. This is also summarized by the Pearson's correlation coefficient for the
linear regression calculated between these two genes, which is calculated to be very low. However,
if an additional stimulus is applied to the regulatory system such that gene 1 has a wider range of
expression, then despite the randomness in the relationship between the two genes observed in the
previous range of expressions, we begin to see what appears to be a linear relationship with a much
larger Pearson's correlation coefficient (figure 2.4). If the expression level of gene 1 is perturbed to
an even wider range, it becomes apparent that the relationship is not linear but, in fact, curvilinear,
possibly even a quadratic relationship, as shown in figure 2.5. If the experiment space was
incorrectly selected, then these and many other pairs of genes like it would be assumed to be poorly
or randomly related when, in fact, with the right stimulus, a tight curvilinear relationship would be
determined, and vice versa.
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Figure 2.3: Apparently random relationship in expression space between two genes.

Figure 2.4: Apparently linear relationship in expression space between two genes.
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Figure 2.5: Apparently curvilinear relationship in expression space between two genes. This
curvilinear relationship would be obscured if the expression space had been insufficiently exercised.
2.1.3 Exercising the expression space

In section 2.1.1, we described how each experiment can be viewed as an exploration of the space
of all possible expression patterns. In exploring this expression space, the investigator is
constrained to the space of possible experiments. Informally,the goal of experiments should be to
maximally exercise the genome bringing out the couplings or correlations between genes that are of
greatest relevance to the biological process being studied. We have found the following "watch
metaphor" to be of some use in explaining the interaction between expression space and
experiment design space. We leave it to the reader to judge whether it is helpful, or simply a
confusing distraction.

The watch metaphor Suppose, that we were interested in discovering how an old analog watch of
the sort illustrated in figure 2.6 worked. Simply watching the hands of the watch going around might
allow us to generate some hypotheses about the mechanisms that generate this motion or behavior.
Empirically, we could derive the relationship between the movement of the minute hand and the
hour hand, but the total sum of mechanisms that could explain the behavior would be large. A more
invasive investigation would be to take a hammer to the watch and examine the pieces that fall out
of the watch's case (figure 2.7). The combination of the prior observed empirical behavior and the
examination of these pieces might give us a better, if still grossly incomplete hypothesis (not to
mention the loss of a costly watch). That is, the number of possible mechanisms explaining the
observed behavior of the watch hands would have been substantially reduced. Furthermore, if one
had no other similar watch, these hypotheses might not be verifiable on account of its destruction. A
more sophisticated approach might be to pry open the back of the watch and observe the
movement of the gears and escape mechanisms. With these observations, and one or both of the
prior kinds of investigations, an even better understanding can be obtained of how the various
components of the watch are mechanistically related to one another. All of these experiments are
observational studies, and at best we could generate some fairly accurate hypotheses without ever
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demonstrating causality. Causality would be most convincingly demonstrated by intervening in the
operating mechanism, e.g., winding the watch (partly or until the mechanism breaks), shaking the
watch, immobilizing one of the gears, or replacing a gear with one of different−sized teeth. These
interventions are progressively more technically challenging but also provide better insights and
often confirmation of the hypotheses generated during the earlier observational studies.

Figure 2.6: Noninvasive monitoring of mechanistic behavior. By observing the concerted action of
the watch hands, several competing weak hypotheses about the underlying mechanism can be
generated. The more observations made at different times, the smaller the number of possible
hypotheses generated.
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Figure 2.7: Decomposition of the watch. An invasive exploration of mechanism will reveal most of
the components of that mechanism. In the process of the invasive investigation some of the
components will be damaged. Also, the relationship of these components inside a working watch
must be inferred and is not directly observed because of the invasive nature of this investigation.
The analogy with expression studies, with the indulgence of the reader, can be made as
summarized in table 2.1. These describe different kinds of experiments— distinct points in the
potential experiment space. Some of these experiments allow the components of the watch to work
in their usual fashion, i.e., within their usual "expression space," whereas others bring them into an
operating mode or expression space in which they do not usually function. The question the watch
investigator would have to ask himself or herself is what part of the expression space of the watch
will best inform him or her of the normal function of the watch. It may be that smashing the watch is
the only part of the experiment space that is cost effective or feasible for the investigator. The
smashed or overwound state of the watch may not accurately reflect the normal intact and possibly
more interesting state of the watch's expression space.

Table 2.1: Exploring the experiment space with a watch

Experiment Space in Watch Experiment Space Biological Analogy
Observing the movement of the hour, minute
hands

Hypothesizing cellular function based on gross
cellular behavior

Smashing the watch, examining the pieces Sequencing some of the genes in the cell or
measuring a few proteins or RNA transcripts
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Seeing all the gears working from the back of the
opened watch

Parallel measurement of thousands of genes at
a time Time series measurements

Partially winding up the watch Physiological stimulus
Winding the watch until it is near breaking or until
it breaks, thereby bringing the internal gears of the
watch into behavior they would not typically exhibit

Pharmacological stimulus that brings the gene
expression patterns into an operating region
outside the usual physiological range

Removing a gear Creating an organism with a gene "knocked
out"

Replacing a gear with one of different weight Creating a transgenic organism

To take these analogies one step further, there are multiple arrangements of gears that could
account for the observed interactions between these gears and their effect on the hour hand and
minute hand. Similarly, although perturbations of the genome can provide insight into the
interactions among the major genes involved in a given pathological pathway, they do not reveal the
entire pathway. Rather they expose a significantly large family of possible mechanisms that could
account for the observed behavior. We address this issue in greater depth in the section on
pathway re−engineering (section 4.13.2). Nevertheless, as suggested earlier, there are some
misconceptions about what can be done on the basis of microarray expression studies implicit in
some of the current genomic and bioinformatics literature.

Misconceptions in "reverse engineering" To date, there have been several efforts to try to
reconstruct pathways from gene expression measurements [57]. Given the success of recapitulating
the first few steps of the glycolytic pathway from substrate measurements [12], it would appear
plausible to do this. However, without careful consideration of the pathways that one is trying to
reconstruct, there is significant risk of a methodological and metaphorical flaw in this analysis.

It is important to realize that pathways could exist on several molecular and physiological levels.
The genes that are regulated in one pathway may play a role in another pathway. As an example,
let us consider the genes coding for lactic acid dehydrogenase: The gene LDHA is expressed
mostly in muscle and is located on chromosome 11p15.4, while LDHB is located on chromosome
12p12.2 and is expressed mostly in heart. LDHA is known to have binding sites for HIF−1,
CREB1/ATF−1, and p300/CREB binding protein [62], as well as binding sites for NRE,
NREBP/c−FOS, AP1, AP2, and other transcription factors in its promoter region [104]. LDHB is
thoughttohave a binding site for SP1 [159]. There is also likely to be a post−transcriptional level
regulation of these two genes. Because of the differences in promoter regions, it is safe to assume
that both LDHA and LDHB participate in their own gene expression regulatory networks.

Both LDHA and LDHB code for protein subunits. The final protein product is made up of four
subunits. Various combinations of the two types of subunits are assembled into five different lactic
acid dehydrogenases, from LDH−1 (containing four LDHB subunits), to LDH−5 (containing four
LDHA subunits). These five enzymes are found in a binomial distribution in mammals. Additionally,
the final protein itself is an enzyme that assists in the conversion of lactic acid to pyruvate, called
lactic acid dehydrogenase, and defined by the Nomenclature Committee of the International Union
of Biochemistry and Molecular Biology as Enzyme Commission (EC) 1.1.1.27. Lactic acid and
pyruvate happen to be substrates in the glycolytic pathway of anaerobic energy production.

Thus, in this one simple example, one finds at least three pathways, as shown in figure 2.8. The
operator at the enzyme level pathway participates as one enzyme in a major biochemical substrate
pathway, that of glycolysis. That operator, however, is assembled stochastically in the assembly
pathway from subunit components. Finally, those subunits are produced within their own genetic
regulatory pathways involving a multitude of transcription factors. Considering the three layers of
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pathways, it should now become apparent that it may not be possible to "reconstruct" the glycolytic
pathway simply from measuring multiple gene expressions. However, on a more optimistic note,
given enough gene expression data, one should be able to reconstruct the first layer of these
pathways, i.e., that of gene expression regulation and involving transcription factors and promoter
regions.

Figure 2.8: An example of why discovery of pathways solely using gene expression measurements
is difficult. At least three "pathways" are involved in the conversion of lactic acid to pyruvate. The
highest enzyme level pathway involves the action of an enzyme called lactic acid dehydrogenase,
designated EC 1.1.1.27. However, when one traverses to a lower−level pathway, one learns that
the role of this enzyme is performed by five separate protein products, which appear in a binomial
distribution. When one traverses lower, through the assembly pathway, one learns this distribution
is present because of the various possible combinations of LDHA and LDHB, two individual protein
subunits, of which four must be put together to make an active enzyme. Then, when one traverses
even lower, through the genetic regulatory pathway, one learns that each of these subunits is
regulated differently, and appears on different chromosomes. Not shown are the pathways involved
in transcription, translation, movement of proteins to the appropriate locations, and movement of
substrates into and out of the cells and organelles, and many other pathways.
How vigorously should a model system be stimulated or perturbed? Let's revisit the phrase
"maximally exercising the genome." What constitutes a maximum perturbation will in part be defined
by the goals of the investigator. If she or he wishes to understand the interactions between the
genes under normal physiological conditions, then it may be that only relatively minor perturbations
followed across time will be informative. Even though extreme perturbations are easier to measure,
they might not accurately represent interactions that occur over the normal dynamic range of
activities of the RNA species, structural proteins, and enzymes programmatically generated by the
genome. There are, however, several circumstances when it may be advantageous to perturb the
relationships between the various constituencies of the transcriptome much more violently and
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dramatically than is found under normal physiological or homeostatic conditions. An example of
such a motivation might be to measure the effect of pharmacological doses, rather then
physiological doses, of a pharmaceutical. The intended effect may lie outside the normal operating
range of the genetic machinery, as is often the case in pharmacology. Other times, the goal may be
to examine biological systems which naturally fall far outside the usual operating parameters of the
genomic machinery. This includes a variety of disease states such as a malignancy or diabetes,
where there are single or multiple massive perturbations of the usual homeostatic system, and
therefore a perturbation of the model system that corresponds to the pathological condition would
be appropriate. It is worthwhile considering some extreme examples to illustrate the importance of
this decision.

For example, if one is trying to understand the relationship between a set of genes thought to be
involved in the effect of insulin signaling, it may not be particularly helpful to start with a sample
population of human adipose tissue (fat) which is known to be insulin sensitive, but obtained from
individuals who are all in the fasting state when insulin levels are low or absent. That is, there may
be insignificant insulin exposure or stimulating effect of the insulin−responsive cellular machinery.
Consequently, the experiment design subspace sampled will be too small to adequately explore the
expression space of interest. Furthermore, if the sample population is ethnically homogeneous or, in
the case of a mouse experiment, shares the same genetic background, then these samples will only
inform us of the reproducibility and noise of the biology and the measurement system. In contrast, if
the same population were exposed to varying degrees of insulin, then the behavior of the genetic
program in response to insulin might be better understood. Alternatively, taking a population known
to have varying degrees of insulin resistance would also provide a more diverse range or
heterogeneity of interactions in insulin signaling, which would enable the investigator to explore the
space of possible relationships between the genes. This would then allow the application of a
machine−learning algorithm to elucidate these dependencies. If the degree of insulin resistance is
clinically measured (e.g., as obtained in a carefully performed hyperinsulinemic euglycemic clamp[3])
in close temporal proximity to the expression measurements, then the investigator will probably
have the most accurate control of the experiment design space. The goal then is to stress or
stimulate the cellular regulatory system, which in this instance is glucose homeostasis and insulin
signaling, so that the genes "show us" how they interoperate under normal, and pathological or
pharmacological circumstances. There are several other obvious variations of these kinds of
stimulations such as:

Examine the expression profile in adipose tissue at different points in time after the glucose
exposure to understand the timing of the genetic program. We should not expect all genes to
act at the same time or rate, and therefore sampling the changes in the transcriptome across
multiple time points at the appropriate frequency will be much more revealing than just one
or two points in time.

1. 

Assess gene expression at different fixed concentrations of insulin.2. 
Assess gene expression in ethnically diverse populations. The difference in genetic
backgrounds of these populations will give a sense of how much variation in the signaling
maybe due to genes outside the set that is being studied in a particular expression
experiment. This implies that we would need to hypothesize that changes in the genetic
background affect the functioning and thus the functional genomics of the system. This
presupposes that

insulin production and insulin effect is the combined result of the activity of several
genes;

♦ 

polymorphisms in these genes are distributed heterogeneously across human
populations;

♦ 

such polymorphisms result in significant changes in gene expression or function, or♦ 

3. 
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both.
Explore the pharmacological effects of insulin. After a certain dosage level, increasing levels
of insulin may no longer result in increased effects of glucose transport. However, increasing
insulin may affect other physiological systems within the same cell, as, e.g., transporting
ions across the cell membrane. Taking tissue samples at pharmacological concentrations of
insulin and comparing their expression profile to those obtained with insulin concentrations
in the physiological range would allow determination of genetic mechanisms that respond to
the pharmacological dosing.

4. 

In summary of our discussion, we note that an appropriate set of (microarray) experiments is that in
which the cellular response to the stimuli involved in the experiments will exercise the interaction
between genes over the range of interest and relevance to the biologist−investigator. This critical
aspect of the experimental design will trump any subsequent choice of bioinformatic analytic
technique. Conversely, no bioinformatics analysis will be sufficient to extract functional genomic
knowledge if the expression space is not adequately explored.

2.1.4 Discarding data and low−hanging fruit

After an investigator obtains his or her first microarray data sets, often the first question he or she
will ask is: "Which of the observed up or downregulation of genes represents biologically significant
changes in expression?" This and similar questions are addressed in detail in section 3.3. Here we
provide a context and motivation for an answer that biologists often find discomfiting: that very few
genes are in fact significantly changed in expression in a way that is distinguishable from biological
and measurement variation and noise.[4] We should emphasize at this point that there is an
important distinction between mathematical or statistical significance, and biological significance.
The former has to do with analytically quantifying the difference between two or more different
sample sets of numbers, i.e., microarray expression data, for which there exists standard statistical
tests like the Student's t or Ç2. These tests typically ignore the rich biological meaning and structure
in these numerical representations of expression. The latter is a more complex matter which we
shall discuss here.

It is likely to be the case that there are thousands of genes with important biological outcomes
effected by small relative changes in the expression levels. In the present state of the microarray
technology and with the typically small number of replicate experiments for any given condition,
these small changes cannot be reliably and reproducibly distinguished from noise. This may mean
that even though we measure tens of thousands of genes in a microarray experiment, we would
only obtain hundreds of genes that we are reasonably convinced are involved in a particular
biological system. On the other hand, not all statistically significant gene expression changes lead to
a significant change in the biological or physiological state of a system. This answer is most
disconcerting to those biologist−researchers who have had substantial experience in investigating
the expression of only a few genes at a time. Their investigations typically involve one or two highly
likely candidates based on many prior investigations, and where multiple measurements (all of
which are carefully checked) have been made of the expression levels. Consequently, the
researchers have well−grounded ideas of what constitutes a biologically relevant or significant
change in expression for these few genes. They do not have the benefit of this sort of knowledge for
each of the thousands of genes that are represented on a microarray but nonetheless are
uncomfortable with discarding from further analysis thousands of genes that appear to have large
numerical changes in expression.

In contrast, due to the large number of genes that can be measured in a single experiment,
computer scientists and computational biologists are comfortable— perhaps too comfortable—with
generating exhaustive lists of genes that are possibly involved or interacting in a particular biological
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process. This kind of exhaustive list generation has been quite common in publications of
microarray experiments from 1997 until today. Unfortunately, such lists are not that helpful to the
biologists who wish to determine which elements in these lists are worth pursuing, i.e., are
biologically significant for their investigations. This is often the reason for questions of what
constitutes a significant fold change, where significance can mean anything from "present in the
tissue," "associated with the system being studied," "causative of the changes in the system being
studied," or even simply meaning "worthy of further study." Thus, an analyst for a typical functional
genomics study will simply draw two boundaries: one covering increases in expression and the
other covering decreases in expression, as shown in figure 2.10. Such an analyst will then declare
that any gene found beyond these lines (the red points) is significantor relevant to the biological
process being studied. Unfortunately, there is no single threshold number or even function that we
can provide that would generate a particular number of candidate genes that is worth pursuing for
any arbitrary experiment and experimental design. Fortunately, there are well−founded decision
analytic procedures that can be followed in order to come up with the appropriate number of
candidate genes for any given investigation. These are described in detail in section 3.2. The
underlying motivation for picking a threshold is straightforward.

Figure 2.10: Typical uses of fixed fold thresholds. Reproducibility scatter plots. In each of the
experiments, samples were hybridized to identical oligonucleotide arrays containing probes for 6800
human genes. The message abundance in arbitrary units is plotted. Left panel: A single biotinylated
RNA target was divided in two and each half hybridized to two arrays. Fifty−nine genes (0.8%)
judged to be expressed "present" by the Affymetrix GeneChip software differed by more than
twofold, and 0.3% differed by more than threefold. Middle panel: A single biotinylated target was
hybridized to one array, the sample removed and then rehybridized to a second array. Of "present"
genes 2.6% and 0.4% differed by more than twofold and threefold, respectively. Right panel: A
single total RNA sample was converted to biotinylated cRNA in two independent labeling reactions,
and the cRNA then hybridized to two arrays. Of the "present" genes 2.2% and 0.4% differed by
twofold and threefold, respectively.
The first question one has to consider is the cost of a false positive. A false−positive gene is a gene
which, in reality, is not biologically significant to the process under investigation, but which the
analytic technique deems to be significant, statistically or biologically. That is, what is the cost
involved in the follow−up procedure to confirm the function of a gene in a particular biology
process? Whether this confirmation process, or biological validation, involves quantitative PCR, in
situ hybridization, the generation of a transgenic mouse, a transient−transfection assay, or
transfecting a cell line, its cost in time and money will be substantial. This cost thus limits the
number of genes that can be investigated. The threshold that will then be picked will be determined
in part by the disutility or cost of the biological validation step for false positives. The tens of
thousands of genes present on any microarray now ensure that the number of false positives could
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potentially overwhelm the typical time and financial budgets of most (academic) research
laboratories.

Of course, there is the second and converse question of the cost of missing a false negative from
the same system. A false−negative gene is a gene which, in reality, is biologically significant to the
process under investigation, but which the analytic technique deems not to be significant,
statistically or biologically. There are likely to be several genes involved in any signaling pathway of
interest. Not all genes in a pathway are equally amenable to biological validation. Furthermore,
some of the chosen genes may be more suitable targets than others for diagnostic assays or
therapeutic interventions. If the threshold picked for considering a gene to be significantly[5] changed
in expression excludes one of these targets, then the cost of that false negative will be quite high,
e.g., a missed scientific opportunity or lost opportunity for commercial development.

With this in mind, it becomes clearer how a threshold should be picked. First, the investigators
should ask themselves how many false−positive and false−negative leads they can tolerate. Then
they can conduct a series of replicate experiments as discussed in section 3.2. and determine
where they will have to draw the thresholds to attain the required sensitivity and specificity.[6] So that
if one is about to embark on a functional genomics investigation, an integral part of the experimental
design must be the decision analysis diagrammed in figure 2.9. This requires that the cost to one or
one's enterprise of missing the one or more genes that are likely to be involved in the genetic
regulatory pathway of interest be made explicit. Similarly, the cost of having to follow up on false
leads must be estimated. These two costs define the principal disutilities that one is trying to
minimize. In order to complete this simple decision analysis, the probabilities corresponding to the
sensitivities and specificities that are diagrammed will also have to be obtained. After this is
complete, one will then know whether it is possible to engage in a productive high−throughput
functional genomics strategy, or whether one has to increase the sensitivity or specificity of the
measurement techniques, or whether one needs to increase one's biological validation budget, or all
three. Given the current level of reproducibility of expression measurements in microarrays, most
investigators will choose a high level of specificity to reduce the false−positive rate. This will
inevitably lead to a high false−negative rate. At this point the biologist will find that among the false
negatives are genes that are known to have changed expression (but did not meet the significance
threshold computed by the bioinformatician) which will lead naturally to the following worry: Many
other genes of relevance to the biological system under investigation are being discarded from the
analysis and follow−up. This worry is likely to be well−founded but given the state of the
measurement technology, and the typical sample sizes employed, it cannot be easily remedied. It
remains, that the low−hanging fruit, while only numbering in the hundreds, are likely to shed new
light on the processes studied. Already this represents several orders of magnitude more
hypotheses to be tested as compared to the investigations of the pregenomic era. For those fruit
higher up the tree, the above decision analysis suggests the need to wait for more accurate and
cheaper microarray technologies.
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Figure 2.9: A decision analytic procedure for picking a threshold for selecting genes from a
functional genomics experiment. Because of the large number of probes on current microarrays, it is
all too easy to underestimate the cost and practical intractability caused by even a moderate false
positive rate. Investigators are advised to perform this simple decision analysis in order to determine
what false positive and false negative rate they can afford before they proceed with any
experiments.
It goes without saying that the preceding discussion is an oversimplified decision analytic
procedure. Attempting to assess the utilities of false−negative findings will be particularly difficult for
most investigators, but the constraints of realistic budgets will be a driving factor in considering this
analysis. However, the procedure we have described does have the merit of providing a rational
basis for deciding upon the number of genes that one should seek to obtain from one's pipeline.
Even a coarse decision model can be useful in avoiding unpleasant surprises after the initial
excitement of obtaining a list of putatively interesting genes wears off. The reader who is interested
in more sophisticated decision analyses is referred to the textbook by Weinstein et al. [187]. It
should be noted that the raw specificities and sensitivities of the expression microarrays used in a
functional genomics pipeline need not be the ones that are used in this decision analysis. As we
demonstrate in sections 3.2.2 and 3.2.8, the application of appropriate noise models over repeated
experiments can lead to improved sensitivity and specificity. The cost of such models is typically in
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the increased number of microarray experiments required to develop those models.

Dynamics Perhaps the best glimpse of the interactions between the various genetic components,
and in particular their causal dependencies, is obtained through analysis of the dynamics of the
system. This is elaborated considerably in the section on dynamics (section 3.6.3, page 146).
Suffice it to say here that understanding the trajectory over time of various RNA component species
rather than their absolute values at any given point in time provides far more information about the
operation of the underlying system. To return to our watch metaphor, observing how the gears turn
inside the watch while we smoothly move the minute hand or the hour hand will give us much more
information about how the gears move together than a few (unordered) snapshots in time of the
different positions of these hands on the face of the watch. In most analyses to date, even when
expression data are obtained as a time series, the information buried in the specific ordering and
timing of these measurements is rarely exploited. For example, many of the clustering and
classification methods employed (and introduced below) will generate the same answers even if the
order of the measurements were shuffed. In fairness, the number of time points and the sampling
intervals of many of the existing time−series expression data sets is minimal. They provide
insufficient information for most of the standard armamentarium used to analyze time−oriented data.
As the price of microarrays falls, the quantity and quality of time−series experiments will
undoubtedly increase, at which point many of the techniques for analyzing trends and periodicity
that have been developed in statistics and the signal processing literature will become applicable. At
that time, the temporal relationships between every single expressed gene with every other gene
measured at all time points will provide a qualitatively improved set of insights into causal
relationships in the genetic regulation of cellular physiology.

[1]For example, cellular proliferation and differentiation during development.
[2]All of these genes have been implicated in somatic growth and bone repair.
[3]This involves giving the subject a continuous intravenous infusion of insulin and glucose, while
maintaining a relatively constant blood glucose concentration by varying the rate of the glucose
infusion.
[4]This is particularly true given the noisy nature of most microarray−based expression measurement
systems.
[5]For the discussion here, we define "significant" as "worthy of further study."
[6]Sensitivity can be described as (1 � false negatives)/all positives; specificity as (1 � false
positives)/all positives.

2.2 Gene−Clustering Dogma

There is a central underlying assumption in all gene−clustering techniques for expression analysis.
Simply put, the assumption is that genes that appear to be expressed in similar patterns are in fact
mechanistically related. Furthermore, the corollary to this assumption is that although genes may
distantly affect the function of other gene products, they fall into groups of more tightly regulated
mechanisms.[7] For instance, the genes that govern chromosome function or meiosis may be more
tightly linked to each other than they are to the genes involved with another function, such as
apoptosis. This has been the basis of our collective experience in biological investigations over the
last century: that there are groups of proteins which interact together more closely than others.
Often they have been organized into pathways such as glycolysis, the Krebs cycle, and other
metabolic pathways in which the gene products called enzymes have to work in concert. Other
more obvious functional clusters are those of structural proteins whichhave to come together in a
conserved and reproducible fashion in order to serve their purpose, whether they are the
components of the ribosomal unit or the histoproteins which are essential to maintenance of the
structure of chromatin. On this basis, if we can find genes whose expression patterns approximate
one another, we can possibly impute that they are functionally clustered together. That is, they have
functions that are related.
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Several important caveats are worth noting here. First of all, it remains unclear just how discrete the
functional groupings of gene function are in the cellular apparatus. It may be that individual gene
products have so many different roles under different circumstances that several of them partake of
essential roles in significantly different functions.[8] The second caveat is that the term "functionally
related" is itself ill−specified. If the pattern of expression of one gene is similar to that of another, it
could signify all kinds of relationships, ranging from " two genes having gene products that
physically interact," to "one gene encoding a transcriptional factor for the other gene," to "twogenes
having different functions but similar promoter sequences," to "two genes both with promoter
sequences bound by repressors which are knocked off when a nuclear receptor is activated, even
though the two genes have widely disparate functions." Of course there is a level of abstraction at
which all genes are functionally related in their role of keeping the cell alive and producing whatever
components are needed for the rest of the organism. But below this level of abstraction, there are
many alternative and, by their nature, sloppy definitions of clustering. Therefore, we should be
somewhat wary of the claim that similarity in expression corresponds to similarity in function.
Nonetheless, it is a useful starting point for many analyses of a genome whose function remains by
and large unknown at this time. Additionally, as we discuss in the chapter on dissimilarity measures
(chapter 3), the question of what constitutes a similar expression pattern is itself poorly defined, or
at least has multiple alternative definitions. For example, similarity could mean having similar
patterns of change over time. It could mean similar absolute levels of expression at any given point
in time, or it could mean perfectly opposite but well−choreographed patterns of expression. Just
which dissimilarity measure is chosen for looking at patterns of expression will inuence the kind of
functional clusters that we expect.

2.2.1 Supervised versus unsupervised learning

In the introductory chapter, we discussed why the computational techniques applied in the analysis
of gene expression are qualitatively different from those of traditional biostatistics: the data sets are
of high dimensionality and yet the number of cases are relatively small. Consequently, the number
of solutions that could explain the observed behavior is quite large. For this reason, the
machine−learning community has recognized the potential role for their techniques specifically
designed to explore high−dimensional spaces (such as those of voice or face recognition) and have
also recognized the enormous need to apply these techniques to genomic data sets. To this effect,
the first reaction of a computer scientist with a background in machine learning when he or she
becomes aware of the new challenges created by genomic data sets is to pull out the tools of the
standard armamentarium of machine learning. He or she then begins to explore informally, and
subsequently evaluates formally the results obtained when these tools are applied to genomics data
sets. We provide a framework for the armamentarium in the genomic data mining chapter (chapter
4, page 149) but here we only provide enough of an overview to discuss these tools with respect to
experimental design.

Two useful broad categorizations of the techniques used bythe machine−learning community are
supervised learning techniques and unsupervised learning techniques. These are also commonly
known as classification techniques and clustering techniques, respectively. The two techniques are
easily distinguished by the presence of external labels of cases. For example, labeling a tissue as
obtained from a case of acute myelogenous leukemia (AML) or acute lymphocytic leukemia (ALL) is
needed first before applying a supervised learning technique to create a method to learn which
combinations of variables predict or determine those labels. In an unsupervised learning task, such
as finding those genes that are co−regulated across all the samples, the organization or clustering
of the variables operates independently of any external labels. The kinds of variables (also known
as features in the jargon of the machine−learning community) that characterize each case in a data
set can be quite varied. Each case can include measures of clinical outcome, gene expression,
gene sequence, drug exposure, proteomic measurements, or any other discrete or continuous
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variable believed to be of relevance to the case.

What kinds of questions are answered by the two types of machine learning? In supervised
learning, the goal is typically to obtain a set of variables (e.g., expressed genes as measured on a
microarray) on the basis of which one can reliably make the diagnosis of the patient, predict future
outcome, predict future response to pharmacological intervention, or categorize that patient or
tissue or animal as part of a class of interest. In unsupervised learning, the typical application is to
find either a completely novel cluster of genes with a putative common (but previously unknown)
function, or more commonly to obtain a cluster or group of genes that appear to have similar
patterns of expression to a gene (i.e., they fall into the same cluster) already known to have an
important well−defined function. The goal there is to find more details about the mechanism by
which the known gene works and to find other genes involved in that same mechanism either to
obtain a more complete view of a particular cellular physiology or, in the case of pharmacologically
oriented research, other possible therapeutic targets. Although the distinct goals of supervised
versus unsupervised machine−learning techniques may appear rather obvious, it is important to be
aware of the implications for study design. For example, an analyst may be asked to find classifiers
between two types of malignancy, as was done in the Golub et al. investigation of AML and ALL
[78]. However, the lists of genes that reliably divide the two malignancies may have little to do with
the actual pathophysiological causes of the two diseases and may not represent any particular
close relationship of those genes and function. Why might this be? It is quite possible that small
amounts of change of some gene products such as transcriptional activators and genes such as
p53 may cause large downstream changes in gene expression. That is, with only a subtle change,
an important upstream gene may cause dramatic changes in the expression in several pathways
that are functionally only distantly related but are highly influenced by the same upstream gene.
When applying a classification algorithm directly on the gene expression levels, the algorithm will
naturally identify those genes which change the most between the two or more states that are being
classified. That is, a study design geared toward the application of a supervised learning technique
may generate a useful artifact for classification, diagnosis, or even prognosis, but it will not
necessarily lead to valuable insights into the biology underlying the classes obtained.

Let us consider the more general cases where gene expression values are not the only data type.
For example, as illustrated in figure 2.11 below, a given case can include several thousand gene
expression measurements but also several hundred phenotypic measurements such as blood
pressure, a laboratory value, or the response to a chemotherapeutic agent. Here again a clustering
algorithm can be used to find those features that are most tightly coupled in the observed data.
When designing an experiment that includes the various data types, it is worthwhile thinking ahead
of time whether some kinds of features are more likely to cluster together, separately from the
genomic data. That is, after application of a clustering algorithm the data set may reveal
relationships between the nongenomic variables that are much more significant and stronger than
any of those that involve gene expression or sequence. While that is not necessarily a bad
outcome, it will not help the investigator who is trying to understand the particular contribution of
genetic regulation to the observed phenomenon. As an example, if one looks at the effect of
thousands of drugs on several cancer cell lines, then it should not be surprising if these drug effects
were most tightly clustered around groups of pharmaceutical agents that were derived from one
another through combinatorial chemistry. Similarly, phenotypic features which are highly
interdependent, such as height and weight, will cluster together. The strength of these obvious
clusters will often dominate those of heterogeneous clusters that contain phenotypic measurements
as well as gene expression measurements. This suggests that careful use of feature reduction to
only include those features that are nonredundant and only truly independent phenotypic measures
for each case should be used. We refer the reader interested in systematic approaches to feature
reduction to the excellent text by Sholom Weiss and Nitin Indurkhya [188].
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Figure 2.11: Clustering more than only expression values. A full−edged functional genomic study
with clinical relevance will involve multiple and quite heterogeneous data types. The realities of
clinical research and clinical care will ensure that there is a requirement for the handling of missing
data.
2.2.2 Figure of merit: The elusive gold standard in functional genomics

Whereas the discussion above was motivated by the questions posed by our collaborators who are
primarily biologists or clinicians, it parallels similar questions coming from those colleagues with a
computer science background. One question is, how can we determine whether a particular
methodology that we are applying is successful or not? Is one machine−learning algorithm better
than another, or does one clustering method provide more robust clusters than another? In other
words, how do we know how successful a particular functional genomics investigation is? What is
the figure of merit that we are trying to obtain?

The figure of merit is probably the most ascertainable for the case of a known classification. Take,
for instance, the case of the task of the classifying whether a particular tissue belongs to one of two
tissue types using a supervised learning technique. Suppose also that a test sample is available.
Then, various classification algorithms can be run against one another and the sensitivity and
specificity of these algorithms can be compared. More generally, the receiver operating
characteristic (ROC) curve of each of these classification algorithms can be defined. A good
example of such a comparison is provided by Michael Brown et al. [33]. Several classification
algorithms were employed and compared and ranked based on a weighted measure of true and
false positives and true and false negatives. The best performance turned out to be in the
application of support vector machines. The test that was used for this "bake−off" was the
Saccharomyces cerevisiae data set from Stanford involving expression data of 2467 genes across
79 different hybridization experiments.[9] Because the classification is known in advance, the
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performance of these algorithms can be measured. However, there are several limitations which
should be recognized. The classification algorithms' performance only pertains to the particular
population or set of experiments on which it was originally tested. That is, a classification algorithm
working on a yeast data set may not necessarily work as well relative to other algorithms on
distinguishing two different types of leukemia or two different types of diabetes mellitus in humans.
Even less dramatically, the same algorithm trained on one set of patients with leukemia may have a
different relative performance compared to other classification algorithms on another set of leukemic
patients drawn from a different population or obtained with a different ascertainment bias. For
example, one set of patients may have been selected because of particularly refractory disease that
caused them to be referred to a tertiary care hospital and another set of patients may have been
treated in community hospitals. It is possible that the underlying diseases of these populations may
be different and therefore the possibility of underfitting or overfitting the underlying classes of
disease in these populations will differ. The figure of merit, therefore, in a classification experiment
is the correct classification performance of an algorithm or measure for that particular population. Its
applicability or merit for use in even related populations is uncertain or problematic.

Figure of merit in a clustering experiment What is the figure of merit for a clustering analysis?
That is, how can we evaluate the degree to which the cluster of genes obtained are in fact correct or
relevant? For anybody who has performed a clustering procedure on microarray expression data, it
will seem obvious that it is altogether too tempting when one obtains a cluster of genes through any
machine−learning algorithm to come up with a post hoc justification for why those genes mayhave
fallen or risen together. This temptation is all too evident in the publications of the last 3 years in
which clusters of genes reported by investigators are described typically as falling into one of three
different categories. The first is well−known published associations, either mechanistically verified or
empirically known, that have been obtained through other more conventional techniques. Second is
associations that appear plausible to the authors, and presumably the reviewers, but have not been
proven in the literature. The third is associations for which the authors are hard−pressed to find
support. For the biological investigator who wishes to further investigate the fundamental biology of
genes and their function, the last two categories constitute a fairly unsatisfactory basis on which to
invest several months, if not years, understanding the basis for the imputed associations or potential
functional dependencies.

The challenge then for the functional genomist using microarray data is to come up with means to
validate the clusters obtained. There are two levels of validation. The first is a statistical or
methodological validation with techniques such as permutation or cross−validation as described
elsewhere in this book (section 4.12.1 and section 4.12.2). These techniques can be used to
ensure, within a specified degree of certainty, that for the particular data set being studied, the
clusters are neither the result of serendipitous coordination of gene behavior nor that the samples
are apparently inadequate[10] to estimate the reliable coordinated behavior of gene expression. An
alternative method is to estimate the probability of particular clusters. This methodology is still only
in its infancy and the relevant literature is only now beginning to be generated for functional
genomics.[15, 178]. As with other aspects of functional genomics, much larger data sets will allow
more effective use of these methods. Ultimately however, we should remember that the clusters or
classifications that we obtain through machine−learning techniques are only reflections on the
measurements made in a particular system. If we are to make broad claims about the empirical or
scientific truth of the relationships or classes that we infer from expression data, wewill have to
submit analyses to the same kind of tests that havebeen developed for other experimental sciences
with longer histories. Specifically, we need to at least come up with the microarray equivalent of
Koch's postulates. In 1890, Robert Koch set out to develop criteria for judging whether a given
bacterium was the cause of the disease. The criteria are summarized in table 2.2.
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Table 2.2: Koch's postulates

It (the suspected pathogen) should be present in every instance of the disease.1. 
It should be isolated from the diseased host and grown in pure culture.2. 
The specific disease must be reproduced when a pure culture of the agent is innoculated
into a healthy susceptible host.

3. 

The same agent must be recoverable from the experimentally infected host.4. 

It has been recognized there are several problems with Koch's postulates and there is a great deal
of discussion and disagreement about this in the literature of the history of science [143]. However,
the postulates are a good first approximation of the requirement for validation of functional
genomics experiments. Therefore the analogs to Koch's postulate in the domain of microarrays may
be useful. These are illustrated in table 2.3. The criteria describe the test for an inferred regulatory
dependency obtained through microarray analysis.

Table 2.3: Functional genomics analogs to Koch's postulates

If gene A is found to be correlated with gene B then this relationship should be reproducible
through northern blots and other quantitative expression measurement techniques [151].

1. 

Furthermore, in all pathological conditions in which the gene is thought to play a critical role,
the predicted level of that gene should be found at the right time and in the right part of the
tissue during the disease process.

2. 

If a gene thought to be involved in a pathway is underexpressed or overexpressed in a
model system, then the process controlled by that pathway will be affected.

3. 

It is only with these biological tests that we can "rate" the performance of clustering algorithms—it is
the only durable figure of merit. It is not surprising that very little of this kind of hypothesis testing
has been reported in the literature. After all, for each gene in a cluster, there is implied a laborious
sleuthing effort in which the bioinformatician and biologist must closely collaborate to verify the
results using the analogs to Koch's postulates in table 2.3. If we are to avoid a functional genomics
"meltdown," hinted at in the introductory chapter, then the interdisciplinary nature of the functional
genomics pipeline (diagrammed in figure 1.3.1) will have to be substantively adopted. All gene
associations or regulatory relationships suggested by bioinformatics techniques should undergo at
least a minimal validation by the biologist. Conversely, experimental design without the involvement
of the bioinformatician is likely to lead to wasteful, expensive, and unrewarding analyses.

[7]In other words, there are several distinct and statistically distinguishable processes.
[8]Well−known examples of these are the transcriptional factors such as sonic hedgehog (shh) which
in some tissues and at some times are involved in cell proliferation and in others in cell
differentiation processes.
[9]Although this paper is one of the better examples of comparison and classification techniques, it
does not compare the entire ROC curve but only one single point on the curve. Therefore, it
remains unclear what would be the overall performance of these algorithms under circumstances in
which specificity and sensitivity were valued differently. See page 201 for a brief discussion of using
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the ROC curve to evaluate a classification test.
[10]Insufficient numbers of biological samples, insufficiently strong effects, or sufficiently distinct
biological processes, or any combination of these.
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Chapter 3: Microarray Measurements to Analyses

3.1 Generic Features of Microarray Technologies

The gene expression assaying technologies that will be discussed in this chapter are RNA detection
microarrays, variously known as DNA chips, biochips, or simply chips. It is easiest to think of the
utility of microarrays in functional genomics as a five−step process.[1]

Probe: This is the biochemical agent that finds or complements a specific sequence of DNA,
RNA, or protein from a test sample [8]. It can include pieces of cDNA amplified from a vector
stored within a bacterial clone, oligonucleotides synthesized in a fluid medium,
oligonucleotides built on a solid phase base pair by base pair, or nucleotide fragments of a
chromosome. This can be extended to incorporate the database of expressed sequence
tags (ESTs) for serial analysis of gene expression (SAGE), (see Glossary, page 277).

• 

Array: The method for placing the probes on a medium or platform. Current techniques
include robotic spotting, electric guidance, photolithography, piezoelectricity, fiber optics, and
microbeads. This step also specifies the type of medium involved, such as glass slides,
nylon meshes, silicon, nitrocellulose, membranes, gels, and beads.

• 

Sample probe: The mechanism for preparing RNA from test samples. Total RNA may be
used, or mRNA may be selected using a polydeoxythymidine (poly−dT) to bind the
polyadenine (poly−A) tail. Alternatively, mRNA may be copied into cDNA, using labeled
nucleotides or biotinylated nucleotides.

• 

Assay: How is the signal of gene expression being transduced into something more easily
measurable? For the microarrays in common use, gene expression is transduced into
hybridization. For SAGE, gene expression is transduced into oligonucleotides via restriction
enzymes and ligation. For PCR, gene expression is transduced into amplified pieces of
cDNA.

• 

Readout: How is the transduced signal going to be measured? How is information about the
signal represented? For the microarrays in common use, hybridization is typically measured
either using one or two colored dyes, or radioactive labels. For SAGE, the constructed
oligonucleotides are measured through sequencing. For PCR, the amplified pieces of cDNA
can be measured using gel electrophoresis.

• 

For the microarrays in common use, one typically starts by taking a specific biological tissue or
system of interest, extracting its mRNA, and making a fluorescence−tagged cDNA copy of this
mRNA. This tagged cDNA copy, typically called the sample probe, is then hybridized to a slide
containing a grid or array of single−stranded cDNAs called probes which have been built or placed
in specific locations on this grid (see table 3.1 for alternative terminology). Similar to the general
hybridization principles behind Southern or Northern blots (see glossary, page 277), a sample probe
will only hybridize with its complementary probe. Fluorescence is typically added to the sample
probe in one of two ways: Either (1) fluorescent nucleotide bases are used when making the cDNA
copy of the RNA, or (2) biotinylated nucleotides are first incorporated, followed by an application of
f luorescence−labe led s t reptav id in ,  wh ich wi l l  b ind to  the b io t in .  Depending upon
manufacturer−specific protocols, the probe−sample probe hybridization process on a microarray
typically occurs over several hours. All unhybridized sample probes are then washed off and the
microarray is lit under laser light and scanned using laser confocal microscopy analogous to the
phosphor imager in the traditional blot procedures. A digital image scanner records the brightness
level at each grid location on the microarray corresponding to particular RNA species.

55



Table 3.1: Common probe nomenclature

Immobilized nucleic acid on
microarray surface

Free nucleic acid that is being
interrogated

General microarray Probe Sample Probe
Robotically spotted
microarray

Probe Probe

Affymetrix microarray Probe Target

Studies have demonstrated that the brightness level is correlated with the absolute amount of RNA
in the original sample, and by extension, the expression level of the gene associated with this RNA
[157]. At a coarse level, one microarray experiment may be thought of as N many Northern blots
that simultaneously assay a total RNA sample on a small common medium or substrate for as many
different mRNA species—N being the total number of unique RNA species probes located on the
physical chip. Note that the amount of total RNA required for a typical Northern blot is more than
sufficient for one microarray experiment in the current technologies. However, this analogy breaks
down in that only a single hybridization condition (e.g., temperature, time) is used in hybridizing all N
assays, and unless the probes are carefully chosen, this may not be the optimal condition for the
assay of all RNA species.

A prominent characteristic of microarray technologies is that they enable the comprehensive
measurement of the expression level of many genes simultaneously on a common substrate. In this
regard, typical applications of microarrays include the comprehensive quantification of RNA
expression profiles of a system under different experimental conditions, or expression profile
comparisons of two systems under one or several conditions. The former embraces the comparison
of expression profiles of a system under a control and a test condition, whereas the latter includes
contrasts between different strains of organisms, as, for instance, between a normal (e.g.,
wild−type), and a constructed (e.g., knockout) organism. Another intriguing use of microarrays is to
compare expression levels between neighboring cells within the same microscopic field, as
demonstrated in [123]. Aside from their widespread utility in functional genomics, oligonucleotide
microarrays have also been used for single nucleotide polymorphism (SNP) analysis since many
probe SNPs can be placed on the microarray for comprehensive parallel SNP detection, and in
much the same way one can also perform DNA sequence analysis.

Regardless of the gene expression technology to be adopted, almost all of them have performance
factors that depend critically on the general validity of certain fundamental biological assumptions
outlined below:

There is a close correspondence between mRNA transcription and its associated protein
translation. As noted by Brown and Botstein [34], one would ideally like to measure the final
products of every gene, such as proteins, or even better, the biochemical activity of these
products, which are more directly related to biological functionality. Such quantitation would
provide a link between chemical DNA bases at microscopic levels with biological aspects
that are manifest at macroscopic scales such as phenotype and physiology. However, there
is no practical generic tool to do this yet. The assumption that there is a principle of
parsimony—akin to Hamilton's principle of least action in the physical sciences—which
drives the close relationship between gene expression and biological function was most
clearly articulated by P. O. Brown and D. Botstein in [34]:

1. 
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"The second reason [for using DNA microarrays to study gene expression on
a genomic scale] is the tight connection between the function of a gene
product and its expression pattern. As a rule, each gene is expressed in the
specific cells and under the specific conditions in which its product makes a
contribution to fitness. Just as natural selection has precisely tuned the
biochemical properties of the gene product, so it has tuned the regulatory
properties that govern when and where the product is made and in what
quantity. The logic of natural selection, as well as experimental evidence,
provides part of the basis for our belief that there is a sensible link between
the expression pattern and the function of its gene product. Thirty years of
molecular biology have provided numerous examples of genes that function
under specific conditions and whose expression is tightly restricted to those
conditions."

Biologists can quickly find exceptions to this assumption. For example, proteins that make
up the cellular matrix can considerably outlast the lifetime of their associated mRNA, or
conversely, they may be metabolized or degraded much more rapidly than the mRNA from
which they were transcribed. Nevertheless, the initial successes in the applications of gene
expression microarrays in investigations of expression and function suggest that this
assumption holds true more frequently than not.
All mRNA transcripts have identical lifespans. Again, there are several well−known
exceptions. For instance, we know that length of the 3’ poly−A tail of an mRNA appears to
be related to its stability. Furthermore, there are examples of mRNA that have longer− or
shorter−term stability within specific cells or after its transcriptional event such as dystrophin
mRNA from patients with certain types of muscular dystrophies. As a tangential comment on
temporal effects: The probe−sample probe hybridization rate is known to be a function of the
guanine−cytosine (GC) content of a transcript. In general, this rate is proportional to GC
richness.

2. 

All cellular activities and responses are entirely programmed by transcriptional events. At a
meta−systems level, this assumption may indeed be true, but in terms of direct mechanistic
coupling, there exist many examples in which external stimuli cause changes in the
biochemical program within the cell without engaging the transcriptional machinery. Figure
3.1 is an illustration of a response of free intracellular calcium to aldosterone exposure.
Aldosterone is a steroid hormone that typically acts through binding with receptors that are
translocated to the nucleus and which then initiate or modify a transcriptional program. Here,
the time scale of the acute response suggests a nongenomic mechanism; in other words,
the response does not require transcriptional activation. This example demonstrates how a
molecule that usually works via modulation of transcription (i.e., steroid hormones) may also
affect bioprocesses at the nongenomic level. There is also a much larger class of biological
processes that do not primarily operate at the transcriptional level. These include muscular
contraction, nerve excitation, and hormonal release. Eventually, all these events will cause
some change in transcriptional activity, e.g., replenishing stores of neurotransmitter, but the
patterns of gene expression would probably not reveal the control processes that govern
them at the subgenomic time scale.

3. 
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Figure 3.1: The nongenomic time scale response in aldosterone exposure. The response (in
seconds) shown here is much faster than any known receptor−to−transcription response that
steroid hormones are usually thought to act through. (Derived from Gamarra et al. [74].)
There are presently two types of chip technologies in common usage: robotically spotted and
oligonucleotide microarrays. It is important to note that these two microarray technologies are the
very earliest and are currently the most widely used. Several competing technologies are emerging
that may prove to be more cost−effective, reliable, and versatile (see chapter 7). Next, we briefly
describe these two most popular microarray technologies.

3.1.1 Robotically spotted microarrays

Robotically spotted microarrays (figure 3.2), namely, the robotically spotted cDNA glass slide, were
introduced into common use at Stanford University and first described by Mark Schena et al. in
1995 [157]. They are also known as cDNA microarrays.
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Figure 3.2: Robotically spotted microarray hybridized to two samples, each stained with two colored
dyes. An overview of procedures for preparing and analyzing cDNA microarrays and tumor tissue.
Reference RNA and tumor RNA are labeled by reverse transcription with different fluorescent dyes
(green for the reference cells and red for the tumor cells) and hybridized to a cDNA microarray
containing robotically printed cDNA clones. The slides are scanned with a confocal laser scanning
microscope, and color images are generated for each hybridization with RNA from the tumor and
reference cells. Genes upregulated in the tumors appear red, whereas those with decreased
expression appear green. Genes with similar levels of expression in the two samples appear yellow.
Genes of interest are selected on the basis of the differences in the level of expression by known
tumor classes (e.g., BRCA1 mutation−positive and BRCA2 mutation−positive). Bioinformatics
analysis determines whether these differences in gene expression profiles are greater than would
be expected by chance. (Derived from Hedenfalk et al. [90].)
In making the array, a robotic spotter mechanically picks up specific cDNA sequences, typically
amplified from vectors in bacterial clones using PCR, from separate physical containers and
deposits them in specific locations in the grid on the glass slide to create specific probes. Each
cDNA drop should ideally be equal in quantity. This fabrication approach epitomizes the
do−it−yourself tendency in microarray measurement, even though there are several commercial
ready−to−use versions available. The frequently home−grown quality of these arrays has led to to
the production of highly localized and customized microarrays which pose specific challenges in the
dual tasks of background noise reduction and foreground RNA signal amplification during
subsequent  data analys is  s tages.  These chal lenges are d iscussed in  sect ion 3.2.
Designer−definable parameters exist to control spot−basing size, the amount of time for drying, as
well as experimental parameters concerning the glass slide material to be used.

There are several advantages and disadvantages in using a robotically spotted microarray:

The first advantage is customizability. A large subsequence (~ 2 × 103 base pairs long)
complementary to the actual sequence that is to be probed is laid down on the chip by the
designer who has full control over the species of probes that are to be used. This means,
e.g., that if one wishes to make customized chips for a specific purpose, such as for probing

• 
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the expression of specific RNA in certain cell types, or specific polymorphisms of those
genes, one can design a layout and can direct a robotic spotter to make these microarrays.
The setup cost of this approach is on the order of $20,000 and detailed guidelines may be
found at the Brown laboratory microarraying website.[2] Additionally, companies such as
Affymetrix, Amersham Pharmacia, BioRobotics, and Cartesian Technologies sell robotic
spotters−arrayer units. Glass slides are available from a variety of vendors specifically for
microarray construction. Commercial aspects of the manufacture of such chips appear to be
expanding. The notable disadvantage with greater customizability is that it may lead to more
possibilities for errors. For instance, poor quality control or nonuniformity in the construction
of different species probes such as spot−basing size will complicate the subsequent analysis
and interpretation of the resulting chip data.
The second advantage of robotically spotted microarrays is that larger pieces, or entire
cDNAs, are placed on the chip, thus reducing the likelihood of nonspecific hybridization of
labeled sample probes to the probe that was laid on the chip. Typically, a designer who
wishes to have a particular gene probe on a chip will create a clone with the 52 and 32 ends
of that particular gene of interest. The substrings of these cDNAs of the original gene are on
the order of 100 to 200 base pairs long. A distinct weakness here is that even though a long
probing subsequence ensures a sufficiently confident representative substring of the original
gene, it does not mean that hybridization conditions will be fully and equally optimized for all
species of cDNA subsequences. As we have noted earlier, the probe−sample probe
hybridization rate is known to vary depending upon the GC content of a transcript.

• 

The third advantage is that RNA from two different samples (typically a test and a control
condition) can be hybridized onto a common cDNA microarray substrate at the same time.
The two separate RNA samples are typically labeled with different fluorescentdyes, such as
Cy3 and Cy5. The two−dye system allows for the excitation of the microarray by laser light at
two different frequencies and thus the image of hybridized RNA abundance can be scanned
for both colors (corresponding to distinct samples) separately. Since the hybridization
conditions, and thus the brightness, of any one spot is not the same as another spot, the
individual signals are not typically used separately. Instead, the calculated signal is the ratio
or fold difference in the brightness of the hybridized RNA of one sample versus another,
specifically the intensity of Cy3 versus Cy5, i.e., Cy3/Cy5. If a background intensity for each
color is measured and controlled for, the ratio becomes.  This in turn

provides a measure of relative abundance of the RNA from one sample with respect to the
RNA from another sample, and hence the relative expression level of the corresponding
gene in the samples. On the other hand, it has been shown that not all cDNA sample probe
sequences label symmetrically with Cy3 and Cy5 [106] and paired dye−swapping
experiments are performed (i.e., if the first hybridization is control (Cy3) versus test (Cy5),
then switch dyes for the second hybridization). If the labeling were symmetrical, then the plot
of  versus  for every probe would be line of slope one

through the origin.

• 

In summary, each robotically spotted microarray experiment has its own built−in control, and results
are given in terms of fold change or difference from a control situation. However, the measurement
of absolute quantities and variations are more challenging in this technology.

3.1.2 Oligonucleotide microarrays

The second popular class of microarrays in use has been most notably developed and marketed by
Affymetrix. Currently, over 1.5 × 105 oligonucleotides of length 25 base pairs each, called 25−mers,
can be placed on an array. These oligonucleotide chips, or oligochips, are constructed using a
photolithographic masking technique similar to the process that is used in microelectronics and
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integrated circuits fabrication, first described by Stephen Fodor et al. in 1991 [70]. Currently, these
commercially available microarrays are not produced individually, but instead are made in parallel.
An entire wafer (containing between 40 and 400 microarrays) is constructed, tested, then broken
apart to create the individual microarrays. At this time, commercially produced oligochips exist that
are disease−as well as species−specific, such as rat neurobiology and yeast genome arrays, and
custom microarrays can be ordered with a 4−week turnaround or less.

The manufacturing technique for an Affymetrix oligochip is markedly different from the more
mechanical process of making robotically spotted arrays. Eachwafer starts out as an empty glass
slide. On this substrate, 25−mer probes are built base by−base by placing single DNA bases on the
glass and then on top of a preceding base. All 25−mer probes are constructed in parallel, with high
precision, by selectively masking specific coordinates or locations on the glass surface and
exposing the entire ensemble to ultraviolet light in between laying on the additional bases adenine
(A), thymine (T), guanine (G), and cytosine (C) separately. Each applied photolithographic mask
generates different areas of photodeprotection on the solid glass substrate. The combination of
these masks with an intervening chemical coupling step allows the incorporation of additional
nucleotides to existing strands only where desired. This entire process is known as light−directed
oligonucleotide synthesis.

One advantage of the oligonucleotide microarray is that its higher density of probe pairs allows for
more genes to be screened or assayed on a single chip, as compared to robotically spotted arrays.
Consequently, there is less need for a priori restrictions on the number of genes that are to be
scanned. A disadvantage is that the current technology only allows for at most one experiment to be
run on a single chip at any one time. Thus, for example, one does not obtain meaningful data from
placing the control sample and test probes on an oligonucleotide microarray simultaneously; instead
these two samples are measured on two separate oligochips. This means, in turn, that one typically
has to apply a suitable normalization transformation across separate microarray data sets (i.e.,
inter−array) at the subsequent data analysis stage in order to make meaningful comparisons of
reported expression changes from a control to a test condition. Additionally, if a scientist is
interested in studying a specific species for which no appropriate oligochip exists, then this
technology is not presently available. Oligochips are not as easily customizable at the user's end as
robotically spotted microarrays.

Since each probe is limited to 25 base pairs in length, a question immediately arises as to how each
gene can be screened uniquely using only 25 base pairs. For each gene that needs to be
represented, or whose expression needs to be measured on Affymetrix's oligochip, a set of sixteen
to twenty 25−mers are chosen which uniquely represent that particular gene, and would hybridize
under the same general conditions.[3] The Affymetrix literature calls the sample probe that is to be
interrogated by cDNA probes on its microarray, the target. Every set of perfect match (PM) probes
for an mRNA has a corresponding set of mismatch (MM) probes. An MM probe is constructed from
the same nucleotide sequence as its PM probe partner, except that the middle (usually the 13th)
base pair has been switched to result in an alphabet mismatch. For example, the following two
25−mers may be associated PM−MM probes to assay for the following sample probe:

The combination of a PM and its associated MM oligonucleotide probe is called a probe pair. There
are two principal reasons for the use of MM probes. First, at low concentrations of the target or
sample probe when the PM probes have already reached their lower limit of sensitivity, the MM
probes display greater sensitivity to changes in concentration. Second, MM probes are thought to
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bind to nonspecific sequences at the same rate as the PM probes. Thus, MM probes serve as an
internal control for background nonspecific hybridization (see section 3.1.2 for details). However,
depending upon the total RNA sample, it could turn out that the PM probe is already highly specific
and the MM probes are simply binding to differently−specific labeled subsequences in the sample.
One has to be careful to distinguish between nonspecific hybridization and differently−specific
hybridization with regard to the use of MM probe data.

For target preparat ion, suff ic ient amounts of  sample probe are f i rst  synthesized by
reverse−transcribing the total RNA using an oligo−dT primer containing a T7 polymerase site for 52
to 32 transcription. Amplification and labeling of the cDNA sample probe is achieved by carrying out
an in vitro transcription reaction in the presence of biotinylated deoxynucleotide triphosphates
(dNTP), resulting in the linear amplification of the cDNA population (approximately 30− to 100−fold).
This linearity assumption becomes increasingly weak with decreasing quantities of total RNA and
increasing number of amplification cycles. The biotin−labeled cRNA probe generated from the
sample  is  then hybr id ized to  the o l igonuc leot ide ar rays,  fo l lowed by b ind ing to  a
streptavidin−conjugated fluorescent marker. Laser excitation of the hybridized sample, confocal
microscopy, and image acquisition by an optical scanner is performed. This results in an image file
in which each oligonucleotide species is represented by a small rectangular area (~ 50 ¼m2), called
the probe cell, which is itself composed of several image pixels, each occupying an area from 3 to
24 ¼m2 (figure 3.4). The image file is processed so that the intensity of each probe cell is reported
as the 75th percentile of the intensities of all the pixels in a probe cell, excluding the pixels at the
border of the cell. These probe cell intensities are stored in a .cel file, which therefore reports a
measure of hybridization per contiguous oligonucleotide surface on the microarray. We describe the
contents of a typical .cel file below.

Figure 3.3: The photolithographic construction of microarrays. Synthesized high−density
oligonucleotide microarray manufacturing with photolithography. Using selective masks, photolabile
protecting groups are light−activated for DNA synthesis (1, 2); photoprotected DNA bases are
added and coupled to the intended coordinates (3). This cycle is repeated (4) with the appropriate
masks to allow for controlled parallel synthesis of oligonucleotide chains in all coordinates on the
array (5). (Derived from Lipshutz et al. [121].)
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Figure 3.4: Pixel, probe cell, and Affymetflrix scanned image. Schematic showing how images are
composed of probe cells, which contain probes that appear as pixels. (Derived from Jain [102].)
Affymetrix microarrays and background intensity calculations The Affymetrix GeneChip
analysis protocol uses the term absolute analysis to describe the algorithm for determining whether
transcripts represented on the probe array are detected and the intensity of expression. Briely, for
each microarray that has been hybridized with a prepared target, washed, and scanned, one
obtains the following sequence of files as the Affymetrix software attempts to translate that
particular chip experiment into numerical data representing detectable RNA intensity levels:

A grey−scale .tiff image file of the physical microarray where a lighter or darker pixel
indicates a respectively stronger or weaker hybridization of a cDNA fragment to the probes
at the particular coordinate marked by the pixel

• 

A .dat text file containing coordinates and intensity levels for individual pixels• 
A .cel text file with probe cell coordinates and intensity calculated as a trimmed average of
pixel intensities—on average a probe cell is made up of 8 pixels × 8 pixels

• 

A .chp text file with 11 columns that contain the statistic, calculated by the Affymetrix
software, for sets of 16 to 20 probe cell pairs, PM and MM, which interrogate particular
transcripts

• 

An important consideration in all microarray experiments is the contribution of the intensity of the
background effects on each microarray. Since this can vary from one array to another, Affymetrix
has developed its own methodology for subtracting the background from the hybridization signals.
Background effects refer to brightness that ends up in the reported measurement reading for a
probe cell, even though these effects did not originate from the probe cell. It typically includes
intra−chip phenomena such as localized physical changes (e.g., temperature during hybridization)
in a probe cell that diffuse into its neighboring probe cells, or nonuniformity in ambient brightness
levels in localized regions on a microarray surface. Background effects are components of the more
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general phenomenon of noise, which we discuss in section 3.2.

The entire microarray surface is divided into 16 sectors Within each sector an average statistic is
calculated from the lowest 2% of probe cell intensity values. This is the background intensity for that
sector and this value will be subtracted from the average intensities of all image features in that
sector. Consequently, the number of background probe cells (i.e., probe cells that are used to
calculate background intensity) will depend upon the number of probe cells in the array. In theory,
calculating background on a per−sector basis minimizes the effect of changes in the
microenvironment across different parts of the array.

In addition to calculating average background intensity, background probe cells are also used to
compute the effects of background noise variations on the reported measurements. As shown in
figure 3.5, the mean intensity of these background probe cells is obtained and the distribution
around the mean is calculated. In other words, it is assumed that all the background probe cells
should be the same near−zero intensity, and the variation around this is considered noise.
Intuitively, a wider distribution around the mean for the background probe cells implies a more
pronounced noise component for all expression measurements in the probe array.

The calculation corresponding to this intuition is given in figure 3.5(b). This is the formula that
Affymetrix uses to calculate the significance of a difference in intensities between the PM probe
cells and associated MM probe cells. Both the ratio and the difference between the PM and the MM
probes, PM/MM and PM−MM, for each probe pair are computed. These values are then compared
against two thresholds respectively: the statistical ratio threshold (SRT) and the statistical difference
threshold (SDT)— see figure 3.5C —which are themselves functions of the background for that
probe array. If both thresholds are exceeded in the negative direction, the probe pair is considered
"negative," and if they are exceeded in the positive direction, the probe pair is "positive." These
assignments of probe pairs as negative or positive are then incorporated into more aggregate
measures described below.
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Figure 3.5: Background noise on Affymetrix arrays. A, A diagram showing how background noise
variance is obtained from the background cells. B, The calculation of the background noise. C, The
definition of SDT and SRT and how they define "positive" and "negative" probe pairs. (Derived from
[10].)
For each gene whose expression the microarray has been designed to measure, there are between
16 and 20 probe cells representing PM probes and a same number of cells representing their
associated MM probes. Collectively, these 32 to 40 probe cells are known as a probe set. A .cel
file contains all the probe cell intensities for all the probe sets represented on a microarray. The
.cel file is used, in turn, to generate derived or aggregate statistics for each probe set (e.g., a
measure of expression or a particular gene). These aggregate statistics are stored in a .chp file.

Theoretically, each Affymetrix probe set of 16 to 20 25−mers is designed to be uniquely
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representative of a particular gene or EST, and to no other known gene or EST. However, it is often
the case that a probe set cannot be found for a particular EST which fulfills these rules, and thus
must be designed by relaxing the rules. In practice, nonspecific hybridization of individual 25−mers
is more significant than in robotically spotted microarrays, and this is one form of noise (see section
3.2 for more coverage of noise). In addition, nonspecific hybridization with other RNA species may
result in an entire probe set for a gene fluorescing with little or no noticeable contrast between the
PM and MM, as shown in figure 3.6:

Figure 3.6: Nonspecific hybridization on an oligonucleotide microarray. The two rows of probe cells
represent the probe set for a gene transcript. The PM probes are on the top row and the MM probes
are on the bottom row. Even if there is a lot of specific hybridization to the PM oligonucleotides due
to the presence of the targeted gene transcript, if there is significant nonspecific hybridization, then
the amount of transcript cannot be estimated accurately. In this illustration, the number and intensity
of dark probe cells on the bottom row is higher than that in the top row and therefore most software
packages would report that the reported intensity for the gene is unreliable—an "Absent" Absolute
Call in Affymetrix parlance.
Recall that in theory, an MM probe is designed to bind to nonspecific sequences at the same rate as
its associated PM probe. Due to the low specificity of individual oligonucleotide probes as compared
to the lengthy cDNA sequences used in most robotically spotted microarrays, Affymetrix's goal has
been to use all 32 to 40 probe cells to increase the aggregate specificity. In order to meet this goal,
Affymetrix has developed several measures across the PM and MM to increase specificity and
generally improve the signal−to−noise ratio of the hybridization measurements. These derived
values provide measures of quantified gene expression and the reliability of gene expression.
These measures are summarized in table 3.2.

Table 3.2: Affymetrix aggregate or derived measures per probe set
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The two most commonly quoted measures are the Average Difference (Avg Diff) and the Absolute
Call (Abs Call). The Avg Diff is an aggregate measure of the difference between the PM and MM
probe cell intensities per probe set. In the simplest case, a highly specific hybridization will "light up"
all the PM probe cells and none of the MM probe cells. In this case, the Avg Diff would be a positive
number which increases with the quantity of that particular RNA species present in the sample. In
practice, the pattern of figure 3.6 is more common. The greater the intensity of the MM probe cells,
the lower the Avg Diff. If the intensities of the MM probe cells exceed those of the PM probe cells,
then a negative Avg Diff can be reported. Therefore, even if a gene is expressed highly in a
particular biological sample, the Avg Diff could be negative if there is also a lot of differently−specific
hybridization reported by the MM probe cells.

The various techniques in the literature that have been employed to handle negative values of Avg
Diff in an analysis are all controversial. Most often, genes with negative Avg Diffs are simply omitted
from the analysis because the common log transformation used for robotically spotted array data is
not defined for negative numbers. This loss of information is obviously not desirable. Other
approaches such as thresholding negative numbers to a positive constant create a systematic
artifactual bias in the distribution of Avg Diff results in the data set that affects all subsequent
analyses that depend on these quantities.

Regarding the Abs Call per probe set, Affymetrix has empirically developed a decision table for
each probe set of 16 to 20 probe pairs that is used to determine whether there was a “Absent,
"Marginal," or "Present" call based upon the Positive−to−Negative Ratio, Positive Fraction, and Log
Average Ratio. Note that this decision table will have different values for these three parameters for
each chip set. The need for such a decision table stems from the fact that the specificity of the

67



different probe pairs will vary across probes and across samples. In theory, the Abs Call provides a
qualitative measure of reliability of the reported expression level (see figure 3.7). The naming
convention of the Abs Call values is unfortunate as the report of an Absent Abs Call does not
necessarily mean that the gene is not expressed in a sample; rather it signifies that the gene
expression measurement on that microarray and for that experiment is not reliable, e.g., its signal
was below background effects.

Figure 3.7: The Affymetrix Absolute Call. The relationship between Absolute Call and expression
level for a microarray. Far more Absent (A) calls than Present (P) calls are at lower expression
levels, but significant numbers of Absent calls are found even at expression levels in the low
thousands.
A general understanding of these aggregate measures will make the reader aware of some major
implications for analysis. First, the aggregate probe set values may not be reliable for all purposes.
For example, in contrasting reported measurements from separate arrays, the aggregate measures
Log Avg Ratio and Avg Diff may not be directly comparable as is because of the differences in
specificity and sensitivity of each probe set, which is not captured by the aggregate measures. In
contrast, Affymetrix software exploits probe−specific knowledge within the probe set in developing
the decision table so that analyses and computations occur at the level of the .cel file. As
described above, these files report the intensity of the individual probe cells, though at the time of
writing, the oligonucleotide sequences for each probe cell are not known. Since most microarray
analyses reported in the literature mainly employ Avg Diff values and not individual probe cell
intensities, the comparability and reproducibility of these published results are less than optimal.
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Figure 3.8: Graphical display of how Affymetrix Absolute Calls predict reproducibility. Correlation of
expression levels from the same hybridization "cocktail" measured on two microarrays. Top: the
correlation using only those genes for which an Absent call was reported by both microarrays.
Bottom: only the Present called genes.
Another factor complicating the use of these aggregate measure values is that several settings,
such as the noise threshold, are tunable by the operator of the Affymetrix scanner and software unit
such that different reported aggregate measures may not be comparable across different microarray
data sets. Despite the preceding concerns regarding aggregate measure values, the standard in the
literature has typically been to not publish the .cel files with individual probe measurements but
instead to release the aggregate statistic, e.g., .chp files with all their attendant problems with
comparability evolving from these.

At present and in sharp contrast to robotically spotted microarrays, the use of oligochips runs
counter to the do−it−yourself ethos of many biologists for three primary reasons. First, except for
large pharmaceutical companies, the construction of oligonucleotide microarrays occurs offsite and
completely under the control and supervision of the manufacturers (essentially not peer−reviewed).
Second, current oligochip manufacturers charge what the market will bear, and oligochips are
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typically more expensive than robotically spotted arrays. Third, the specific oligonucleotide
sequences that are used by the manufacturers of oligonucleotides to interrogate an RNA transcript
are proprietary information. It is likely that as the market for microarrays broadens, the second and
third problems will resolve themselves. Regarding the first reason, in this genomic era in which we
see the rapid industrialization of biological investigations, an ever−increasing fraction of the
biologist's tools will become commodities available from vendors at diverse price−performance
trade−offs. From that perspective, industrial fabrication of whole transcriptome microarrays will likely
become common in the near future (see section 7.1).

[1]This schema is adapted from Leming Shi's website http://www.gene−chips.com/.
[2]http://www.cmgm.stanford.edu/pbrown/mguide/index.html.
[3]Early reports at the time of writing indicate the next generation of Affymetrix oligochips may use 11
probe pairs per probe set.

3.2 Replicate Experiments, Reproducibility, and Noise

A ubiquitous and underappreciated problem in microarray analysis is the incidence of microarrays
reporting nonequivalent levels of an mRNA or the expression of a gene for a system under replicate
experimental conditions. This phenomenon of microarray data irreproducibility is widely attributed to
noise in the bioinformatics literature. For example, a common sample probe or target pool that is
split and hybridized simultaneously to two separate chips of the same make and following the same
scanning protocol wil l almost surely result in two, not exactly similar−looking, graphic
representations of RNA abundance. These images will subsequently translate into two quantitatively
different expression data files (e.g., .cel or .chp files on the Affymetrix platform) after they are fed
into image−processing and statistical software. This situation is akin to saying that two Northern blot
assays for a particular RNA species in a split total RNA sample, having been processed under an
identical protocol and conditions, led to differentX−ray film images of the RNA intensity, thereby
resulting in two different reports of expression intensity by a phosphor imager, which is clearly
undesirable.

The irreproducibility of a measurement reading—that is not entirely attributable to poor experimental
design or practice—is neither new nor endemic to the microarray technology. One encounters this
same problem in any measurement of a physical quantity, especially when these quantities exist on
microscopic scales or when the measurement device is highly sensitive. Let us consider a thought
experiment illustrating the latter point: Get 500 ml of well−mixed NaCl solution (i.e., salt water). Split
this solution into two samples A and B, and measure the NaCl concentration in both samples with a
series of k measuring devices of increasing sensitivity which report concentrations up to an
accuracy of 10�kkg mL‘  for k 
 {1, 2, …} respectively. Let CA(k) denote the NaCl concentration in
sample A as reported by device k, and likewise define CB(k). When the device sensitivity is low, say,
when k = 0, 1, 2, the device would probably not detect any concentration differences between A and
B, i.e., CA(k) = CB(k) or more concretely, CA(0) = CB(0) = 5, CA(2) = CB(2) = 5.01, say. As the device
sensitivity increases, say, for k > 9, typically negligible physical factors such as small pockets of
uneven NaCl concentration in A and B might be within the device detection limit and be recorded so
that CA(k) ` CB(k) or more concretely, CA(10) = 5.0100000001 ` CB(10) = 5.0100000002, say.

The usual solution in these situations is to perform as many repeat or replicate measurements as
are feasible and practical, with the hope that a statistic of these repeats converges asymptotically to
the true measure of that quantity with the number of replicate measurements following the law of
large numbers—provided certain conditions concerning the stochastic independence and
distribution of these repeats are met. This approach may minimize, on average, certain systematic
noise, such as measurement errors, but it cannot practically resolve more diverse manifestations of
noise such as ones originating from biological variation in the model samples under investigation.
Furthermore, there is the added issue of material cost with regard to replicate microarray
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measurements. Researchers today rarely perform more than 3 replicate chip assays per
experimental condition due to the relatively high cost per microarray experiment.

In studies involving microarrays, replicate experiments are especially important for, but not limited
to, these following reasons:

Microarray data are often employed during the earliest stages of studies that are not
hypothesis driven and are primarily exploratory in nature. In such cases, the attendant
analyses and conclusions will typically provide hypotheses (e.g., candidate ESTs) for more
focused laboratory investigation at the later stages of the study. For these endeavors, further
pursuit of a false−positive conclusion can potentially be costly in terms of resources and
time.

• 

It is generally good scientific experimental practice, whenever possible and feasible, to
replicate a experiment to verify an earlier, unconfirmed quantitation.

• 

Data from replicate experiments provide a better quantitative understanding of the extent of
noise (see section 3.2.5) inherent in both the system under investigation and the
measurement device [116]. The effect of noise is typically proportional to the level of
sensitivity of the measuring device. As we have previously noted, the amount of total RNA
for a Northern blot assay of a single RNA is more than enough for a typical microarray assay
of more that 104 different mRNA species levels in today's technology. Furthermore, the noise
effect might not scale linearly with the detected expression level and may be sequence
dependent.

• 

The terms replicate, reproducibility, and noise are explained in the next section.

3.2.1 What is a replicate experiment? A reproducible experimental outcome?

No one can step into the same river twice. Heraclitus, c. 540–480 B.C.

Nature does not make leaps. G. W. Leibniz, 1646–1716

Consider the following five thought experiments that aim to compare the levels of blood glucose in
6−month−old mice, 1 hour before and 1 hour after an intravenous insulin treatment at noon.

E1. A 6−month−old mouse M has its glucose levels measured and recorded by a glucometer
G, 1 hour before and 1 hour after an intravenous insulin treatment at noon. Call these
readings R(M, G, Monday, 11), R(M, G, Monday, 13), respectively.

• 

E2. A 6−month−old mouse M2, not the same mouse as M, is subject to the same
experimental protocol as for M in E1 on the following day and here we call the readings
R(M2, G, Tuesday, 11), R(M2, G, Tuesday, 13), respectively.

• 

E3. The same 6−month−old mouse M in E1 is subjected to the same experimental protocol
the following day as it had undergone in E1 with glucometer readings R(M, G, Tuesday, 11)
and R(M, G, Tuesday, 13), respectively.

• 

E4. Another 6−month−old mouse M2, not the same mouse as M, is subject to the same
experimental protocol as for M in E1 simultaneously as M but using another glucometer G2
to obtain readings R(M2, G2, Monday, 11), R(M2, G2, Monday, 13), respectively.

• 

E5. During the time E1 was carried out, M has its glucose levels simultaneously measured
and recorded by another glucometer G2 to produce readings R(M, G2, Monday, 11) and
R(M, G2, Monday, 13).

• 

Questions: Which of experiments E2 through E5 qualify as a replicate of E1? Which is "the best"
replicate of E1? Observe that E2 replicates the experimental protocol, except for the biological
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variation between mice M and M2 and the difference in days. E3 replicates E1 in terms of
experimental protocol and the use of the same mouse, except for the difference in days and
perhaps more important, the initial condition (physiological) of mouse M on Tuesday could be
measurably different following its Monday treatment. E1 and E4 are replicates up to experimental
protocol and simultaneity in running both experiments, modulo the biological variation between M
and M2, and the use of separate glucometers which may be calibrated differently. Finally, E1 and
E5 are simply repeat measurements of the glucose levels of M following the same protocol but with
different glucometers. Typically in the study above, the absolute values R(mouse, glucometer, day,
11) and R(mouse, glucometer, day, 13) are themselves not important; rather, it is the relative
change (difference or fold) from R(mouse, glucometer, day, 11) to R(mouse, glucometer, day, 13)
that is of interest.

The point of the illustration above is to demonstrate that the question above is not well−posed until
we specify what we mean by a replicate. Clearly, there are different levels or gradations for deciding
how one experimental setup replicates another. The way that one chooses to define a replicate
experiment will be driven by, and context dependent upon the biological question that these
experiments were designed to answer in the first place. Only after one has made this definition can
one sensibly discuss (ir)reproducibility of the attendant experimental outcomes. The range of
parameters that could potentially enter into, be manifested, and detectable in a complex biological
system is arguably wider and less easily characterized or controlled than in systems in the physical
sciences. In our example above, the day of the experiment or the individual physical condition of the
mouse may additionally affect its blood glucose level. Without entering into the epistemologies of
Bacon [14] or Popper [143], the experimentalist normally attempts to resolve this difficulty by
designing appropriate control conditions for the experiments and hope that – to paraphrase
Leibniz's aphorism that measurable processes in nature do not change abruptly – the biological
processes are not dramatically different from one normal mouse to another. Specific to our thought
experiments, if the experimentalist has decided to replicate E1 in the sense of E4, then she or he
would reasonably expect the mice physiologies (and by extension, their blood glucose level in
reaction to insulin) in E1 and E4 to not be radically different so that relative changes such as

are "close" to one another. A measure of similarity such as a metric is used to determine and
quantify the "closeness" of ”(M2, G2) to ”(M, G), and thereby the reproducibility of the experimental
results. Detailed discussions of measures of similarity are found in section 3.6. While it is highly
unlikely in a real laboratory situation to find ”(M2, G2) = ”(M, G), the experimentalist might expect
that with a weaker measure of similarity—such as ”(M2, G2) "=" ”(M, G) when both ”(M2, G2) and
”(M, G) havethe same sign—the experimental results are reproducible. Additionally, a statistical
approachmay be incorporated into the idea of reproducibility. For instance, if we carried out 1000
experiments E1 with a different mouse each time and followed the same protocol, we may find that
990/1000 or 99% of the mice that were sampled exhibited a decrease in glucometer readings after
treatment so that we can reasonably state that most — assuming a fair and random enough
sampling — 6−month−old mice experience a drop in glucometer reading after an insulin intake at
noon. Postulating (and checking) further properties about the data readout distribution, standard
(non−)parametric statistical tools such as the Student t and Kruskal−Wallis tests may be used to
determine the statistical significance of this conclusion, specifically the average drop in blood
glucose reading.

3.2.2 Reproducibility across repeated microarray experiments: Absolute
expression level and fold difference
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Akin to situation E5 above, suppose that a common total RNA sample is split and the expression
levels of the different RNA transripts within each split sample are measured on a separate
microarray of the same lot. For such situations, the current bioinformatics literature typically reports
the Pearson's correlation coefficient of expression intensities of one chip reading versus the other
as being close to r = 1.0, i.e., the separate readings are highly correlated, and used this to conclude
that the experimental assay is highly reproducible. We recall that in order to obtain any sort of
meaningful statistic out of the Pearson's correlation coefficient, one typically has to assume that the
paired expression data point for each gene is independent of those of the other genes. But howare
we to account for individual genes whose expressions as reported by each chip are not exactly
equal?

To date, few studies focus on the reproducibility of microarray measurements [116]. In a publicly
available document [9], Incyte Pharmeceuticals demonstrated a high concordance between RNA
expression measurements on cDNA chips using Cy3 and Cy5 dye signals. Based on this finding,
Incyte estimates the limit of detection of fold differences at 1.8, meaning to them that 95% of fold
differences between samples of 2.0−fold and higher are significant From measuring the expression
levels of 120 genes in various cancer cell lines using cDNA spotted filters, Bertucci et al. [24]
showed that close to 98% of the measurements showed less than a 2.0−fold difference upon
repeat. Richmond et al. [152], in their study of differentially expressed genes in Escherichia coli,
filtered out genes below a minimum absolute expression threshold and ones with less than a
5.0−fold difference. Geiss et al. [75] used a Cy3/Cy5 system to measure genes differentially
expressed during human immunodeficiency virus (HIV) infection in which they determined that fold
differences of as little as 1.5 were statistically significant. This minimal fold threshold was
determined by excluding 95% of the expression measurements that were reported, and not by using
information−theoretic methodologies. Publications citing fold differences between control and test
groups which are as low as 1.7−fold continue to be published, e.g., [117].

The foregoing comparative studies do not address the reproducibility of fold differences if entire
microarray experiments were repeated. Butte et al. [40] investigated this topic using Affymetrix
Hu35K oligonucleotide microarrays containing 35,714 unique probes to measure RNA expression
levels of muscle biopsies from 4 patients: P1, P2, P3, P4. Duplicated measurements were made from
each patient sample: P21, P22, P23, P24.

A linear regression normalization procedure—outlined in section 3.4.1—was applied on all the chip
data with respect to the data from patient P1. Intra−patient logarithmic fold differences (LFDs) were
then calculated between the duplicated measurements for each of the four patients. Furthermore,
inter−patient LFDs were calculated between all 6 possible pairs of patients (P1 vs. P2, P1 vs. P3,
etc.) and their duplicates measurements (P21 vs. P22, P21 vs. P23, etc.). The LFD was used
throughout this analysis so that the levels of up and down fold regulation were numerically equal in
magnitude but oppositely signed.

Ideally, if the oligochips assays were perfectly reproducible across the duplicates, one would expect
that Pearson's correlation coefficients at 1.0 between the four repeated expression measurements,
and intra−patient LFDs calculated on each of the duplicated measurements to be the same, i.e., if
gene A is noted to be 10 times higher in P2 versus P1, then it should ideally and similarly be 10
times higher in P22 versus P21. However, the Pearson's correlation coefficients between duplicate
expression measurements of the four patients across all 35,714 probes were .76, .84, .78 and .82
(see figure 3.9). Furthermore, the cross−probe Pearson's correlation coefficients for the six paired
(replicate) inter−patient LFDs were near .0 as shown in figure 3.10 where the first graph shows the
plot of log(P2/P1) versus log(P22/P12). Further analysis showed that this poor correlation coefficient
in the replicated LFD was primarily due to small absolute expression values: When folds are
calculated using a pair of numbers where the denominator quantity is small (i.e., the gene was
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found by the microarray to be not highly expressed), a high fold difference is typically the result.
This is particularly problematic as the effect of noise in microarray assays today appears to be more
pronounced at lower absolute expression levels.

Figure 3.9: Expression measurements made in duplicate from the same RNA samples do not
correlate well all the time. RNA samples from four human samples were placed on duplicate
oligochips and the expression of 35,714 ESTs was measured. Each point represents an EST. The
duplicate expression measurements are plotted here on a log−log scale (base 10). r = .69, .73, .73,
.69. (From Butte et al. [40].)

Figure 3.10: When expression measurements do not correlate well, fold differences correlate even
poorer. Fold differences of 35,714 ESTs were calculated between the six possible pairings of the
four patients. Fold differences are expressed in base 10 logarithm, so that ESTs that did not change
between models are plotted in the center of each graph. Fold differences from the duplicated
measures are shown on the x− and y−axes. Even though the correlation coefficients were high
between original and repeated expression values, the correlation coefficients were very low
between original and repeated calculated fold differences. (From Butte et al., [40].)
It is worth noting that even when the reported absolute expression measurements are reasonably
reproducible between replicate measurements, the fold differences calculated from these reported
measurements may not be as reproducible across replicate experiments. As mentioned above, the
fold or ratio of these expression quantities is very sensitive to small numerical perturbations,
especially in its denominator quantity. This is best explained with an illustration: Say that we carry
out a pair of experiments P1, P2, and that the expression levels of 2 genes Gj and Gk reported in
each experiment are (1.0, 2.0) for Gk and (500.0, 1000.0) for Gj, so that the fold change for both
genes from P1 to P2 are both 2.0(= 2.0/1.0 = 1000.0/500.0). Suppose we further carry out of pair of
replicate experiments P21, P22, and that the reported expression levels are now (1.5, 2.0) for Gj and
(500.5, 1000.0) for Gk. Note that the denominator quantity in the replicate P21 experiment is
perturbed by +0.5 from the reported measurement in P1—an effect one typically sees in the
presence of noise. Let us suppose that the overall absolute expression measurements P1 to P21
and P2 to P22 are reasonably reproducible, i.e., the intensity−intensity Pearson's correlation
coefficients between the duplicate experiments are greater than .99. Note, however, that the
resulting fold changes calculated using these new values are now 1.333(= 2.0/1.5) for Gj and
1.998(= 1000/500.5) for Gk. Clearly, the robustness of the fold is dependent upon the absolute
expression measurement, as we see here that the fold of gene Gj is more stable to noise than gene
Gk. For a detailed discussion of the appropriateness of using the fold as a measure of expression
change apropos microarray data, we refer the reader to section 3.5.

The key points of this subsection are as follows:
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When entire microarray experiments are not replicated, one would not be aware of, or be
able to quantify, the extant irreproducibility in the experimental data and design, and false
biological conclusions may potentially be generated.

• 

Even if the gene expression measurements from a single sample placed on two microarrays
appears to have reasonable correlation coefficient, the fold differences calculated using
those reported measurements may not reproduce as well between replicates at [40].

• 

Based on this experience, we now recommend at least two to three replicates for each data point.
Triplicates are certainly preferable for in worst−case scenarios, it is unclear which of the duplicate
measurements is more correct. Preferably, the RNA sample for each replicate should be generated
separately to maximize noise inclusiveness in the replicate model.

3.2.3 Cross−plat form (technology) reproducibility

The process of comparing gene expression information from a broad range of conditions has been
widely adopted as an approach to functional discovery. As each individual laboratory may use
different expression assaying plat forms to profile a common subset of genes, one obvious question
arises as to how one may combine and compare expression measurements across diverse
technologies. Assuming that such operations makes sense, the problem comes down to
determining the reproducibility of cross−plat form measurements. Analyses by Kuo [113] suggest
that for spotted cDNA probe microarrays and microarrays with Affymetrix−synthesized
oligonucleotides circa 1999, the reproducibility may be poor. The mRNA expression measurements
from oligonucleotide microarrays from Butte et al. [39] were paired with measurements from the
cDNA microarrays from Ross et al. [154] by matching the corresponding cell lines and RNA
transcript probes. When the oligonucleotide data (from the Avg Diff column) were compared to the
normalized Cy5/Cy3 ratio (from the RAT2N column in the ScanAlyze output file) of the cDNA data,
the overall linear correlation across all 162, 120 paired measurements was poor (r = .0326) as
illustrated in figure 3.11. Corrections for GC content, cross−hybridization, and probe length all did
not materially improve the correlation coefficient.

Figure 3.11: Overall correlation coefficients for each matching probe and probe set across two
microarray technologies. Great variance is seen in reproducibility of measurements across probes
and probe sets, with some probes showing correlation coefficients near 1.0, and some even
showing a negative correlation (i.e., a gene which is reported as highly expressed in one technology
has an opposite expression report in the other technology).
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It does not seem likely that the reported measurements from these data sets can be normalized or
transformed into a single standardized unit of gene expression. Moreover, even the qualitative
correlation was poor. For instance, high measurements in the oligochip did not correspond well with
high measurements in the cDNA chip, and vice versa. At the very least, the results of this study
suggest that greater (pre)caution should be taken in making cross−plat form comparisons. While
complementing existing assay technologies, new techniques for expression profiling such as
optically coded beads and ink−jet arrays (see section 7.1) will add to the challenge of comparing
and combining expression data across different plat forms, and are likely to require similar efforts for
normalization and standardization.

Figure 3.12: Pooling total RNA extracts for replicate experiments. Two strategies for making
replicated measurements from samples, pooled and not pooled. N may not necessarily equal n.
3.2.4 Pooling sample probes and PCR for replicate experiments

A typical microarray hybridization experiment today requires on the order of 10 ¼g of total RNA to
generate the labeled sample probe compound for each array (spotted cDNA array, see [167];
oligochip, see [122]). Depending upon the experimental design, namely, how one defines a replicate
experiment, it might not always be possible to obtain enough total RNA from a system, e.g., specific
tissue from a test animal, to prepare sample probes or targets for one or more (as repeat
measurements) chip experiments. For example, suppose that a biologist wishes to obtain the gene
expression profile of the mouse heart during embryonic day 12 (E12) and finds that the total RNA
extracted from one embryonic mouse heart is not sufficient for generating enough labeled target for
even a single microarray experiment. In this situation, an alternative solution is to pool together the
total RNA extract from several, say n many, different E12 mouse hearts to create a sample probe or
target compound which is then split into , N < n, many targets for hybridizing on N separate
chips, and hence resulting in N replicate experimental data.

When these tissue samples are drawn from n embryos that do not share a common parent, the
pooling procedure will average out intra−species biological variations between the mice. This is
independent of and in contrast to the subsequent splitting of one pooled sample into individual
targets for N separate microarray assays and takes into consideration measurement error that
inevitably arises in any empirical experiment.

Regarding the use of PCR to amplify these and any RNA extracts, the reader should note that
beyond a small number of amplification cycles, a heterogeneous RNA mixture that has been
amplified via PCR may not retain the same specific RNA percentagewise composition as in the
original mixture [17]. Furthermore, one should also note that experimental data generated by
re−using a target that has undergone a previous hybridization should not generally be considered a
replicate assay because the biochemical composition of the target may have changed irreversibly
after a hybridization procedure, due to both the protocol and time differences. Typically, a target
needs to be incubated on a microarray for 12 hours or more during hybridization.
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3.2.5 What is noise?

Noise is an informal term widely used in microarray data analyses and experiments to refer to:

N1. Physical effects and parameters extraneous to the aspect of a system one is
investigating, which have entered into the system or the measurement device that quantifies
this aspect, and which, if detectable, would lead to,

• 

N2. Experimental outcomes which contradict a priori known facts, or more specifically and
commonly,variations in experimental outcomes that should be "identical."

• 

Strictly, N1 and N2 are origin (or cause) and effect respectively, i.e., N1, if detectable by the
measurement device or microarray, is manifested to the laboratory observer as N2. Most studies do
not distinguish the former from the latter in their use of the term noise. Typically, the presence of
noise in a system is deduced from comparing an actual measurement outcome of the system
against another comparable reference quantity or a known and confirmed fact. For instance, if we
use a ruler to measure the length of a pencil twice and obtain slightly different readings each time,
then we know that there must be "noise" in our measurement activities because the indisputable a
priori fact is that we are measuring one and only one pencil, with a single fixed length. Here, N1
might include parallax error and N2 is the different recorded lengths. Recalling our prior discussion
on replicate experiments, the range of parameters that affect a biological system study is vast and
not completely controllable so that, in general, N1 may encompass any combination of conditions
that are present at the time of a microarray assay, whether they are inherent in the measurement
device or in the biological system.

For partly cultural reasons, there is a lack of appreciation for the challenge presented by noise in
microarray expression data analysis. Historically, genomicists were fortunate to have had their first
and successful foray into understanding patterns in the genome to have occurred at the level of the
DNA sequence. DNA sequence components, being drawn from an alphabet of 4 characters (A, T,
C, G), are unambiguous—and furthermore, when one assumes that these sequences code for
function deterministically, one finds that the representation of information in a DNA sequence is
essentially digital, or discrete. By contrast, the measure of mRNA species levels, and by extension
the expression levels of associated genes, is intrinsically analog. Because of this, there is more
room for measurement error, and a greater and generally unfavorable dependency on the
measurement technology. RNA level is a continuous quantity and its measurement is no different
from the measurement of any other biochemical processes or products, such as the rate of lactic
acid oxidation in muscle or endorphin levels in the bloodstream. Specifically, in the context of
microarrays, each chip measures microquantities of upwards of 105 different chemical species at a
time on a hybridization medium with an area of less than 10” m2. Bioinformaticians who make the
transition from sequential to expression genomics are often surprised by the massive increase in
the ambiguity and noise levels in the genomic data.

It is worth noting that noise is not entirely a negative phenomenon. In some situations, it could
inform the genomicist to reconsider a priori assumptions, postulates, or questions for a system
which may not be entirely correct or well posed. For instance, referring to the earlier thought
experiments for replicating the measurement of blood glucose levels in mice in section 3.2.1, while
differences (noise) in the repeat measurements E5 point to measurement errors which are
unquestionably undesirable, differences in E1 and E4 (that are not measurement errors) might imply
the existence of significant physiological variations between M and M2 that may suggest that not all
mouse glucose levels respond similarly to intravenous insulin and this knowledge inevitably refines
or changes the study question and objective.
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3.2.6 Sources and examples of noise in the generic microarray experiment

Before delving into details of how one can distinguish chip−reported expression data that arise from
a genuine measurement of mRNA levels in the presence of noise from reported data that come
from noise alone, it is informative to review the ways in which noise could enter a typical microarray
experiment. Noise can roughly be classified, by point of origin, into two categories:

Intra−chip noise encompasses the previously discussed background effect on the chip
surface, where localized physical and chemical changes in one probe feature diffuse into
neighboring probe features. Improper techniques in scanning are also included, such as
having one area of the chip brighter than another. Chip manufacturing defects such as
quantitative non uniformity in laying probe sequences on the array surface would also be
covered (see figure 3.18).

• 

Inter−chip noise includes biological variation in the samples (e.g., note that even pure cell
populations are unsynchronized in their cell cycle phase). Also included are protocol
variations in the hybridization procedure, the environment, time effects, and again, possibly,
inconsistencies in chip manufacture.

• 

In contrast to inter−chip noise, intra−chip noise is often more subtle and not as easily discernible,
due to the fact that there is usually no obvious reference situation for a comparison of a single
microarray experiment outcome.

Next, we explore examples of noise in microarray data. Figure 3.13 below, courtesy of Todd Golub
at the MIT/Whitehead Institute's Genome Center, displays the gene expression intensity−intensity
plot from an experiment that has been repeated with the same sample hybridized onto two separate
arrays of the same type. First, it should be pointed out that had the two arrays produced exactly the
same data, a plot of the gene−by−gene expression level of chip 1 versus chip 2 would have shown
the data points aligning themselves exactly along the diagonal line y = x. Instead, here we see a
typical, and, in fact a rather qualitatively good, result for intermicroarray variation. This variation is a
very typical manifestation of inter−chip noise. Note especially that the typical data point spread
away from this y = x line increases with decreasing expression intensity. As mentioned earlier, this
is due to fact that at lower gene expression levels, the corresponding RNA amounts that are being
measured are smaller and therefore the effect of noise in these measurements is relatively more
significant. Thus, there is greater variation here between these two nominally identical probe assays
in a repeated assay.

Figure 3.13: Apparent differences in source of variance due to log scaling. On the left is the
apparently increased variation at lower expression levels using a plot of the logarithm of all the gene
expression levels measured in one microarray versus the logarithm of all the of the genes measured
on another microarray. When the expression values are plotted on a linear scale as on the right,
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then it appears that the higher expression levels have higher variance. The former scale
emphasizes the decreased reproducibility at lower expression levels and the latter emphasizes that
there are fewer measurements or genes at higher expression levels. Note that for well−definedness,
the logarithmic scale plot excludes measurements that had a negative value.
Golub et al. [78] also plotted two lines, y = 2x and y = ½ x, which mark the locations of a 2.0−fold
increase and a 2.0−fold decrease in gene expression, respectively, relative to the y = x line of an
idealized 1.0−fold increase (or decrease), i.e., zero variation. Observe that at lower expression
intensities, there is a sizeable number of genes whose expression varies outside of this 2.0−fold
envelope despite the fact that these intensities came from essentially identical samples. A
similar−looking pattern is seen in the following two figures. The second figure shows data from
repeat hybridization of a sample that was hybridized to one chip, washed off from the first chip, and
then rehybridized onto a second chip. In the third figure, RNA was extracted twice from a common
sample and hybridized onto two different chips from the same lot simultaneously.

In all three scenarios, there is a similar and more prominent spread of data points about the y = x
line at lower intensity levels about the idealized line of zero variation y = x. At this point, we bring to
attention a common trompe l'oeil that derives from the logarithmic scaling commonly employed to
illustrate the concordance (or lack thereof) between two microarray hybridization data sets. As
shown in figure 3.13, by scaling the data sets to a logarithmic scale, the apparent variance at the
higher expression levels is reduced. However, as we will explore further in our analysis of noise in
microarrays, it remains that a larger proportion of the poorly reproduced results with microarrays are
obtained at the lower expression levels. The reason for the apparent wider scatter at higher
expression levels in the non−logarithm−plotted graph in figure 3.13 is that there are relatively fewer
genes with high measured expression levels.

In figure 3.8, we illustrate another example of the significance of noise in oligonucleotide
microarrays, the Affymetrix GeneChip. Here, we show measured expression data or Avg Diffs
plotted from an experiment where the same RNA sample was hybridized onto separate oligochips
for human skeletal muscle. All gene expressions were plotted on one of the three graphs based
upon their Affymetrix Abs Calls (Absent, Marginal, Present). As we noted in section 3.1.2, Affymetrix
Abs Calls are determined from a decision matrix which is a function of the specificity of probe set
expression for each gene. Note that the decision rules for this matrix are not currently available to
the public. The lack of robustness or reproducible stability in both the Abs Calls and the Avg Diffs is
evident from these plots. That is, for the same RNA sample both the expression level and the Abs
Call will vary. Apropos the Abs Call instability, note that the total number of genes across the three
experiments is well under the total number probes for each GeneChip. While such observed
variances are not unexpected, it should warn the investigator against depending too heavily upon a
particular microarray−reported value, statistic, or call in his or her research program.

The noise example above is not singularly unexpected or unusual within the gamut of microarray
noise examples, nor is it particular to the Affymetrix technology. Similar manifestations of noise,
though from possibly different sources, are just as consequential in other microarray technologies.
For instance, consider data from robotically spotted Incyte GEM microarrays in figure 3.14, which
are three rows of expression data from an Incyte file. Of relevance to our discussion are the location
index of a probe on the physical microarray and its corresponding difference in expression. Incyte
GEM microarrays are used in a technique similar to the two−dye fluorescence technique for cDNA
chips pioneered at Stanford University, so that each microarray is hybridized to two differently
labeled sample probes.
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Figure 3.14: Incyte data file snippet. Heads and the two rows of values from an Incyte data file.
Incyte microarrays are constructed using a robotic spotting process. The spotting process involves
two proximal spots for the two dyes—Cy3 and Cy5—one of which is the targeted clone and the
other a control spot.
Since cDNA microarrays, unlike oligochips, allow for two sample probes corresponding to different
experiments to be hybridized simultaneously on the chip, the inter−experiment noise here may also
intra−chip rather than exclusively inter−chip as we had seen with oligonucleotide microarrays. The
two different colors or labels correspond to signals P1S and P2S respectively. These signals are
corrected for background intensity and its variation, B, by the image analysis software used with the
Incyte microarrays. Background corrected values are reported as P1S/B and P2S/B which
correspond to the background−corrected intensities for the two probes. The P1S and the P2S area
percentages correspond to the areas of potential hybridization that are recorded by the image
analysis software to have undergone actual hybridization. In theory, if the appropriate control probe
is chosen, say P2S, then this should correct for changes in hybridization conditions across different
areas of the microarray that is caused by noise, such as localized temperature differences on the
microarray surface.

The first thing to note from figure 3.15 is that we see an almost similar distribution of intensities for
an identical RNA sample (the "hybridization cocktail") that is hybridized onto two separate Incyte
arrays, P and P’. One way to view the noise profile of a robotically spotted microarray is as a plot of
the ratio of signal P2S versus P2S/P2S’ as in figure 3.16. In the ideal situation, the latter ratio
oughtto be uniformly equal to 1.0. That is, data points should only be distributed along the horizontal
line y = 1 for any signal intensity P2S. In fact, at lower signal strengths of P2S, there are a number
of genes whose P2S/P2S’ ratios are significantly above 2.0−fold, even though on average the
number of these outliers decreases with increasing P2S, and most genes tend to have a fold of 1.0.
This demonstrates once again that the expression variance at lower expression values is more
pronounced.
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Figure 3.15: Duplicate cDNA assays of a common extract. The same RNA extract or hybridization
"cocktail" measured on two Incyte spotted arrays. The P2S signals (the second of two dyes) from
each microarray is plotted for each gene.
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Figure 3.16: Ratio of probe intensities as a function of expression level. The ratio of the P2S/P2S’
signals (y−axis) from two robotically spotted microarrays plotted against the P2S signal. The same
RNA extract was used in both microarrays. Although the ratio is close to 1.0 for many genes, it does
deviate sporadically and widely in a few instances. Also, as the expression level decreases, the
distribution of the ratio spreads increasingly away from 1.0.
Microarray−reported data may also vary by the spatial location of the probe on the physical array. In
order to see this, we map every probe and its associated reported expression amount from the two
dimensional physical chip onto a one−dimensional array or line, and plot the expression level of
each cell on the y−axis versus its location index on the x−axis. Figure 3.17 displays such a plot of
experiments involving Incyte microarrays. A visually prominent feature in these graphs are four
spikes marking dramatic increases in the expression level of the four probe cell locations on every
chip. Furthermore, there appears to be a periodic pattern in reported expression level with respect
to probe location on these microarrays. A careful review of chip manufacturer's specifications
reveals that there have indeed been four control probe sectors (spiked controls of reference RNA
transcripts) on each chip which would account for these spikes. The first preanalysis task then is to
remove these spiked controls' data from their respective data sets and to renormalize these data
sets for background effects, thus producing the next plots. In figure 3.17 the fold differences appear
to be much less variable than previously and less obviously influenced by the probe location on the
microarray.
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Figure 3.17: Ratio of expression level as a function of position. The ratio of the two different dye
intensities per gene for a single microarray plotted against the position in the array (defined as a
single number that is computed from the x and y coordinates of the probe on the array). The "control
islands" that contain "spiked" controls on the array were not included in this plot. Also, all expression
values were corrected for background noise. No particular pattern is obvious on inspection.
An eyeball inspection across thousands of data points as we have done above with the Incyte
expression data set is often not sufficient for detecting subtler and less visually prominent patterns
in the data representation. By applying standard signal−processing techniques such as the discrete
Fourier transform, we find several major frequency peaks in the expression level across the chip
(see figure 3.18). The highest peak here occurs at a frequency of 4 per array surface. This kind of
periodic pattern in the Fourier transform expression data appears to be location dependent, and
should lead the analyst to suspect that something systematically amiss occurred during the
generation of this data set which could have happened during the manufacturing, hybridization, or
the scanning stages.
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Figure 3.18: Fourier analysis of spatial series on spotted microarray. The same data illustrated in
figure 3.17 is subjected to a Fourier analysis to extract systematic periodic signals. As shown, the
frequency with the largest power is 4. That is, there appears to be a periodicity of 4 per microarray
based on the position of the probe on the microarray. The magnitude of this systematic variation
dominates fold changes in gene expression of the magnitude reported elsewhere as noteworthy.
Consider the following image of the Incyte GEM microarray at the time this analysis was done
(figure 3.19). The pattern seems to suggest that the periodicity in the reported data originated from
four separate but similarly behaved sources. It turns out in this example that during the array
manufacturing process, four separate pins had indeed been used to spot each microarray quadrant.
It should not be surprising, then, that small but systematic physical and chemical variations in the
amount of probe cDNAs that were picked up and deposited by each of the four pins are reflected
and recorded in the overall expression pattern one sees here. Other possible sources of the
lower−level systematic variations seen in figure 3.18 may include the frequency with which the pin
assembly units are replaced during the microarray spotting procedure.
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Figure 3.19: Incyte GEM Microarray circa 1999. In this photograph of a GEM microarray, note that
there are four quadrants which are each spotted with separate pins.
Again, although these noise examples were taken from Incyte gem microarrays and are of the
intra−chip variety, it demonstrates that data from any microarray assay should be subject to at least
some scrutiny or a quality control step as we have done here to screen out inherent and systematic
biases in the measurement system. Numerous manifestations and sources of data acquisition error
can be immediately caught by a simple visual inspection of the scanned images of a microarray.
The images of the hybridizations illustrated for three different kinds of microarrays in figure 3.20
should be highly motivating in this regard.
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Figure 3.20: Problems in images acquired from microarrays. On the left: a contaminated D array
from the Murine 6500 Affymetrix GeneChip set. Several particles are highlighted by arrows and are
thought to be torn pieces of the chip cartridge septum, potentially resulting from repeatedly pipetting
the target into the array [156]. On the right top: local changes in intensity due to contaminants and
scratches. (Derived from http://www.mediacy.com/arraypro.htm.) Right bottom: high magnification of
a scanned image of a spotted microarray. Note the different sizes and shapes of the spots [199].
3.2.7 Biological variation as noise: The Human Genome Project and
irreproducibility of expression measurements

As of 2001, preliminary results of the Human Genome Project have provided further explanations
and reasons for microarray measurements having poor reproducibility in addition to the ones
iterated in section 3.2.5. We now know that there exists a relatively high frequency of alternative
splicing products from each gene—see figure 3.21—and are more aware of the heterogeneity of
common gene polymorphisms across individuals and populations.

Figure 3.21: Estimate of the incidence of alternative splicing in genes. While most genes have only
one spliced product, many have more than one, and this can affect the the gene product detection
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efficacy and rate by microarrays. (Derived from Mironov et al. [132].)
Genes, which are composed of exons and introns, have the remarkably versatile property that their
exons can be selectively added or deleted during transcription, giving rise to different proteins from
the same gene. This form of alternative splicing appears to play a crucial role in the cellular
physiology of higher organisms. For example, in the development of Drosophila melanogaster, a
single gene determines the eventual sex (male or female) of the organism, depending upon how the
gene is spliced [91]. In contrast to the most simple eukaryotes such as yeast, it appears that higher
organisms such as humans have a much larger number of alternative splicing products per gene.
The average number of distinct transcripts per gene averages 3.0 for humans as compared to 1.1
for yeast. Current oligonucleotide microarrays only target a set of subsequences for a particular
individual transcript, and full−length cDNA microarrays only target a particular individual transcript.
Consequently, both these technologies will show variation in signal intensity even if the same gene
is being expressed at the same level but an alternatively spliced transcript is being transcribed
rather than the splicing for which the microarray was engineered. Future microarrays may need to
be constructed in a manner that is exon− and intron−specific, instead of gene−specific.

Apropos the heterogeneity of gene polymorphisms, there is, on average, one single nucleotide
polymorphism (SNP) in every 1000 human nucleotide bases. Polymorphic variations of the same
gene can be quite common, as noted by Chakravarti [43], and as a result, a cDNA or
oligonucleotide probe that is engineered for a particular variant might hybridize considerably less
effectively with another variant. This could be true even if the polymorphism does not change the
final protein product of a gene. Although the genetic code is somewhat redundant in the sense that
64 codons code for 20 amino acids,[4] two codons that code for the same amino acid may bind
significantly differently to their complementary DNA molecule and these chemical differences might
be detectable by the microarray.

3.2.8 Managing noise

Now that we have established that the current microarray technologies are bedeviled with noise, we
will begin to address the data that are generated using such systems. The most direct route would
be to have a direct measurement of the variation per gene of all microarray measurements. This is
done by replicating the microarray assay(s). In practice, only duplicate or triplicate hybridizations are
performed because of cost. The goal here is to obtain a subset of genes from these experiments
whose reported expression level is robust across replicates, despite the noise. As we have alluded
to in section 2.9 and as illustrated in figure 2.9, any of these techniques will inevitably have to
balance between their significant false−negative or false−positive rate. That is, in order to avoid
having to follow thousands of red herrings, as would be the case with a high false−positive rate, one
has to be willing to discard many genes that might be genuinely involved in the biological process of
interest on the grounds that their reported expression is inconsistent or irreproducible across
replicates in the current assaying technology. We describe in this section, as an example, one
technique that was developed to identify sets of genes that have been up− or downregulated, that
had a low false−positive rate for the specific data set in consideration. When we consider the
broader question of what constitutes a significant change in expression level for a gene, then the
question of appropriate (dis)similarity measures is raised. This question is addressed in sections 3.3
and 3.6.

Modeling the expression−level−dependent noise envelope If, as has been mentioned in
preceding chapters on reproducibility and replicates, the variance in reported gene expression level
is a function of the expression level itself, then clearly single−value thresholds (e.g., a 2.0− or
3.0−fold increase) applied to an entire expression data set, as is commonplace in the literature, are
not sufficient for deciding which genes are significantly changed between different samples or
conditions. At lower expression levels, these uniform thresholds will be associated with an
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increased false−positive rate, and at high expression levels with an increased false−negative rate.
One way to address this problem would be to develop fold thresholds that are themselves a function
of the reported expression level, rather than a fixed number. This is simply done by obtaining at
least a duplicate hybridization from the same hybridization cocktail hybridized onto two microarrays.
As much as is possible, these are identical experiments in which the operating conditions, cell lines,
culture media, incubation time, and so forth are controlled to be the same.

As the expression values should be identical, all variance is theoretically attributable to
nonbiological sources. Then, for each set of duplicates, an identity mask (ID mask) is calculated in
Tsien et al. [181] wherein are fold changes which are insignificant or attributable to noise alone. Two
parameters are used for creating each ID mask: expression value range (or a sliding window of
expression intensities), and either the scale value or the number of standard deviations. These are
used to calculate the ID mask borders and can be adjusted for different trade−offs in sensitivity and
specificity, depending on one's utility model as reflected in figure 2.9.

We illustrate the application of ID masks to six experiments (A, B, C, D, E, F) that were run in
duplicate. Total RNA was isolated from the cell lines (MCF−7 human breast cancer cells and
MG−63 human osteosarcoma) and hybridized onto Atlas Human cDNA Expression Arrays from
Clontech(Clontech Laboratories, Inc., Palo Alto, CA). Each of these Atlas Arrays (Human 1.2 I,
Human Cancer) is a nylon membrane on which approximately 1200 human cDNAs have been
immobilized. Although this example uses a relatively low−density array technology, the methodology
applies similarly to higher−density microarrays.

Two methods are then explored for creating ID masks. Method 1 relies on segmental calculation of
standard deviations. A "data point" refers to an (x, y) pairing, in which x is an expression value of a
gene g from the first hybridization, and y is the corresponding fold difference value (i.e., the ratio of
the expression of the same gene g in the second hybridization to x). Using all data points in a given
sliding window of expression values (e.g., from intensities 1001 to 2000), the standard deviation of
the fold values is calculated. The average of expression values within that intensity window is then
paired with the average fold value within the same window plus the number of standard deviations
specified by the experimenter. This new pair becomes a candidate "upper mask border" point.
Similarly, a candidate "lower mask border" point is created by pairing the average expression value
of that window with the average fold value minus the number of standard deviations as specified by
the user. Each successive group of data points in each sliding window of expression values (e.g., all
points from intensities 2001 to 3000, then all points from intensities 3001 to 4000, etc.) likewise give
rise to candidate mask border points. A line is then fitted via least squares linear regression on the
set of (expression value, fold value) pairs comprising the candidate upper mask border points. This
line defines the upper mask border. Similarly, one computes the lower mask border from the set of
calculated candidate lower mask border points. If one of the derived mask borders fits
poorly—based upon its relationship to the original data points— the "reciprocal reflection" of the
other (good−fitting) mask border can serve in its place. This simply means that each (x, y) point on
the good−fitting (linear) border gives rise to a point (x, 1/y) to create the reciprocal reflction border.
Figures 3.22 and 3.23 show ID masks delimited by one linear regression border; the other border
was derived by taking the reciprocal values of that linear regression border. The region between
these borders represents the "identity" region of insignificant fold differences (i.e., fold changes
resulting from noise alone).
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Figure 3.22: Identity mask for experiment A. Method 2 with parameters 9000 for expression value
sliding window size and scaling factor 0.975 resulted in the lowest percentage of original data points
lying outside of the mask region (0.7%).

Figure 3.23: Identity mask for experiment E. Method 1 with parameters 5000 for intensity window
size and 3 SD resulted in the lowest percentage of original data points lying outside of the mask
region (0.9%).
The second method, method 2, for creating an ID mask uses candidate mask border points derived
from maximal points in each sliding expression intensity window rather than from standard deviation
calculations as in method 1. Specifically, among all data points in a given intensity window, the point
with the greatest fold value is chosen. This is repeated for each successive window of expression
values. These fold values can also be scaled before use in a linear regression to find the upper
mask border. The lower mask border is analogously derived from the minimal fold values. Once the
ID mask has been derived, all original data points are checked for inclusion or exclusion in the ID
mask region. The percentage of data points lying outside of the ID mask region is recorded. We
then automatically searched a large number of masks for those which provided the best
performance. For both methods 1 and 2 of ID mask creation, sliding windows of ranges 1000, 5000,
and 9000 on the expression value axis were chosen for experimentation. Only when calculations
were not possible with one of these window sizes (e.g., due to division by zero) was an alternative
window size chosen. For method 1, the number of standard deviations (for calculation of candidate
mask border points) was chosen to be 2.5 and 3.0. For method 2, the scaling factor was chosen to
be 0.975 and 1.0. Twelve candidate ID masks were created for each pair of experiments (2
methods, times 3 intensity window sizes times 2 scale or SD factors). For each pair of experiments
the mask with the lowest percentage of original data points lying outside of the mask region was
selected. The results are shown in table 3.2.8.

The particular values that were obtained for these experiments are only shown for illustrative
purposes. For any microarray technology adopted, even a simple analysis of this sort on duplicate
experiments will result in much greater accuracy. That is, these masks will provide much greater
sensitivity and specificity control than a single arbitrary fold−ratio threshold. For even greater
accuracy, this kind of noise modeling must be done on a per−gene basis as described in section
3.3.
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[4]Twenty−one amino acids if one includes selenocysteine.

3.3 Prototypical Objectives and Questions in Microarray
Analyses

We will now discuss common analytic approaches and issues surrounding the basic problems of
finding similarities and differences in reported gene expression levels between the following (refer to
table 3.3):

S1. Genes in a microarray experiment, e.g., intra−array comparisons of the expression
levels in experiment Em of genes Gk versus Gr in table 3.3, or between genes Gk and Gr in
experiments Em through Ey.

• 

S2. Experiments for a gene, e.g., inter−array comparisons of the expression level of Gk in
experiments Em versus Ey, or between experiments Em and Ey across all genes.

• 

Table 3.3: Performance of the 12 identity masks. Each pair of identical experiments gave rise to 12
candidate ID masks. Six of these 12 were derived by method 1 (three with 3 SD and three with 2.5
SD). The other six were derived by method 2 (three with scale 1.00 and three with scale 0.975).
Shown here are the percentages of original data points lying outside of the mask region for each of
the 12 candidate ID masks derived for experiments A, B, C. Ã = standard deviation; intensity range
or window size of 2000 instead of 1000 is used in experiments B and C for the method 1 trials.
(Derived from Tsien et al. [181].)

A Exp A A B Exp B B C Exp C C
Range Size 1000 5000 9000 2000; 1000 5000 9000 2000; 1000 5000 9000
Ã = 3 3.1 2.7 2.2 93.2 80.5 1.7 99.6 100.0 2.0
Ã = 2.5 11.1 3.8 3.3 97.3 97.6 2.7 100.0 100.0 2.4
Ã = 1.0 19.2 6.2 0.7 100.0 99.0 2.4 100.0 100.0 2.4
Ã = 0.975 19.2 6.2 0.7 100.0 99.3 2.4 100.0 100.0 2.9
Note that for expositional clarity, we are assuming a one−to−one correspondence between an
experiment and a microarray assay.

As has been noted previously, the two most prominent characteristics of microarrays are that they
enable the parallel assay of numerous RNA species levels, and the irreproducibility of, and noise in,
their reported expression levels. In view of these characteristics, the principal objective of
microarray data analysis is to extract or discover knowledge about a biological system from the
wealth of gene expression information that is obtained in the wake of each set of chip experiments.
Specifically, information here primarily consists of noise−ridden gene expression data which may be
pangenomic and which may be supplemented by a priori known biological facts. Knowledge, on the
other hand, is certain aspects of the system under investigation that can be elucidated by gene
expression data and which includes correlations between genes or conditions, genes whose
expression levels distinguish dissimilar biological states, or, at a finer level, regulatory mechanisms
and directions of causality between genes, or between conditions and genes. At this point in time,
the question of which biological aspect can be unraveled by expression data has neither been
entirely explored nor clearly defined.

Table 3.4: A prototypal microarrays experiment data set.

… Experiment Em … Experiment Ey …
î
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Gene Gk xk
m xk

y

î
Gene Gr xr

m xr
y

î

In the posthybridization analysis, one will inevitably perform the basic intra− and inter−array
comparisons S1 and S2. We encounter situation S2, for instance, in studies that seek to find gene
markers for biological or physiological states A versus B, where experiments E1 through EmA are mA
replicate expression measurements in state A, and EmA+1 through EmA + mB are mB replicate
measurements in state B. A time course study where experiments E1 through Em are the expression
levels sampled at m time points t12 … , tm, is a typical scenario where S1 is used. Furthermore, both
S1 and S2 could apply in a study where experiments E1 through E2m are m different temperatures
sampled twice per temperature condition. As mentioned in section 3.2, with the irreproducible
nature of microarray reported measurements in mind, any attempt to reach the above objective in a
consistent and rigorous manner will first require well−defined and mathematically workable notions
of reproducibility and similarity of gene expression levels as reported by microarrays.

These definitions should capture or abstract, but not contradict, the biological experience, an
immediate corollary of which would be an empirical approach to determine the significance of a
reported gene expression level change. Since the full details of the thermodynamical or physical
states of a chip experimental system cannot yet be practically obtained, nor can the sum total of all
possible noise sources be characterized, any definition of reproducibility would typically have to be
predicated upon preanalysis assumptions about the behavior of noise in that system.

3.3.1 Two examples: Inter−array and intra−array.

For heuristic purposes, we will describe inter−microarray and intra−microarray analysis situations
which capture the most essential related features of S1 and S2 from the introduction of this chapter.
While these examples only involve Affymetrix oligonucleotide microarrays, the analytic approach
and problems are more general in scope and the methodologies can generally be extended to many
other gene expression assaying technologies following easy domain−specific modifications.

Study S1: Yeast cell cycle A mycologist wishes to find groups of yeast genes whose expression
profiles are similar over a 24−hour period. For this, she or he obtains gene expression
measurements using Affymetrix S98 yeast genome microarrays for a synchronized sample of yeast
cells over a 24−hour period by sampling the total RNA from this population at 30−minute intervals. A
total of 48 separate time points were sampled twice (for duplicate measurements) at each time
point: T1, … , T48 (and replicates T21, … , T248).

Study S2: A drug in tervention study A pharmacologist wishes to characterize the effect(s) of
drug X 3 hours after it has been introduced into normal adult wild−type mice by the expression
levels of liver cell genes that can be probed using Affymetrix Mu11K microarrays. The gene
expression profiles of normal adult mice liver cells that are not treated with drug X are used as the
control state. Call the preintervention or control state A, and the postintervention state B. For
replicate measurements, liver samples were obtained without drug X application from MA adult mice
and another MB adult mice liver samples were obtained after drug X was applied.

Detailed specifications of the Affymetrix technology are available in the Affymetrix GeneChip
analysis manual [10]. A technical outline of this technology, namely on the interpretation of .cel
and .chp files, is found in section 3.1.2. Affymetrix Mu11K murine chips, e.g., have total probe sets
for N = 13,179 unique transcripts, including "housekeeping genes," whereas the yeast genome S98
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array has N H 6400.

The study properly begins at the experimental design stage: Mice liver explants in study S2 are
harvested and prepared under identical conditions—these most obviously being similar time of day,
environmental conditions, and precautionary procedures taken to minimize the effects of
non−X−related artifacts and noise in the gene expression, and mutatis mutandis for the yeast cells
in study S1. Controlling for extraneous factors, which are potentially microarray−detectable in
inter−array study S2, is clearly more difficult and some other factors that should be considered
include the age, physical condition, and sex of the mice candidates. Despite the most stringent
replicate protocol, it is clear that there always exists some biological or biochemical variation
between any two mice, any two cells taken from a common host, or even between any two
synchronized yeast cells. In practice, one can only try one's best to exclude explants from mice
whose observed or known physiological state is believed to be associated with a different response
pattern to X and which might skew the experimental data significantly. With the obvious
modifications, whole yeast cells are harvested and duplicates are collected similarly at each of the
48 time points. Following a well−designed analysis scheme, one would hope to be able to classify
such negligible variations as noise. To this end, it is important that replicate experiments be run for
any chip study. Replicate measurements allow one to quantify the extent to which variations were
detectable by microarrays, and to decide whether this noise will confound the reported
measurements and attendant analyses. Study S2 has MA and MB replicate experiments for each
state. Chapter 2 presents a comprehensive treatment of an experimental design in the presence of
noise.

For the remainder of this chapter, we will primarily be concentrating on inter−array study S2, and
developing the mathematical tools, e.g., normalization techniques and measures of (dis)similarity
which will be used in chapter 4 to address analyses which are essentially intra−array such as study
S1. We note, however, that most of the questions and methodologies in inter−array analyses are
equally relevant to the intra−array instance, with the obvious contextual modifications. In analyses
involving Affymetrix oligochip data, the .chp file is the usual starting point for a typical microarray
analysis, (see section 3.1.2). From this file, we will be considering the Probe Set Name, Avg Diff
and Abs Call columns. Consolidating the columns of the MA, MB .chp files from study S2 into a
table, we have table 3.3.1:

Let Aj and Bj denote the Avg Diff value corresponding to a microarray experiment before and after
drug X intervention, respectively, with duplicates j = 1, 2. Note that the replicate hybridizations A1
and A2 might have been scanned into image files using the different user−defined settings or under
different ambient conditions beyond the control of the experimenter. Therefore, the most natural
question that one asks in any inter−chip study is whether one can validly compare expression
levels, represented by the Avg Diff, for any one gene across .chp files that correspond to separate
microarray experiments. For instance, for Gene 9785 in table 3.3.1 we may ask:

Q1. Do order relations (e.g., <, e, =) of reported Avg Diff values for Gene 9785 in different
experimental conditions imply comparisons between the true expression level of the
measured gene under these conditions? In particular, while one can convincingly argue that
the expression level of Gene 9785 is less intense than the level for Gene 9784 because the
intra−chip Avg Diff of Gene 9785 (250.5) is smaller than that of Gene 9784 (1211.1) in
experiment B1—assuming that all probes are equally effective—it is not immediately clear
whether it is reasonable to claim that the true expression level of Gene 9785 in condition B2
is greater than in condition B1 even though the inter−chip numerical Avg Diff of Gene 9785 in
B2 (141.2) is greater that the Avg Diff in B1 (110.7).

• 

Q2. How would one characterize or distinguish the expression (e.g., fold) change from pre−
to postintervention states for Gene 9785 that is most likely due to a drug X intervention from

• 
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an expression change that is a caused by measurement variations or, more broadly, noise?

Table 3.5: Avg Diff (Abs Call) data for inter−array study S2 where MA = MB = 2

Probe Set Name A1 A2 B1 B2

Gene 1 64.3 (P) 248.2 (P) 128.6 (P) 124.1
(P)

î
Gene 9784 1211.1 (P) 1250.0 (P) ”.6 (A) 18.3

(A)
Gene 9785 250.5 (P) 193.3 (P) 110.7 (P) 141.2

(P)
Gene 9786 ‘54.3 (A) –3.1 (A) 1.1 (A) ’2.0

(A)
î
Gene 13,179 ”0.9 (P) ‘07.7 (A) 459.7 (A) 198.8

(A)
Note that in the ideal system, where every chip assays every transcript equally well and the
experiments have been designed so that only expression changes which are a direct consequence
of drug X intervention are recorded by the chips with all other attendant thermodynamical or
physical variations being negligible and not microarray−detectable, these questions possess trivial
answers. Namely, we expect that being replicates, the Avg Diffs B1 = B2 and A1 = A2 for each gene,
and assuming that Aj, Bj are positive−valued, Bj|Aj quantifies fold change for each gene after
intervention. Such utopian scenarios do not appear to be achievable at any time in the near future.
In the following sections, we describe several ways to address the two preceding questions under
different assumptions and conditions that are commonly used in the bioinformatics literature.

3.4 Preprocessing: Filters and Normalization

We will be referring to the data from study S2 as tabulated in table 3.3.1. Since the number of
replicate experiments in a typical microarray study does not normally exceed three, it is not easy to
derive meaningful statistics for any one gene "latitudinally" across two or three repeat
measurements, e.g., the mean average reported intensity for Gene 9785 in state B is (250.5 +
193.3)/2 = 221.9, Descriptive statistics such as means or variances are generally informative of the
underlying stochastic process in the system being investigated only when one has a large relevant
data set to work on. Even though each microarray assay yields one noisy reading for each of the ~
104 individual genes, the reported measurement for gene k will not inform us about the robustness
of the measurement for gene j (j ` k), in the absence of at least one other whole replicate assay.

On the other hand, even prior to any transformation(s) that will render the distinct replicate data sets
comparable to each other, we can obtain informative statistics for each chip experiment data set
"longitudinally" or intra−array across all genes 1 through N such as the following:

P1. The mean, standard deviation, minimum, and maximum of Avg Diff in each microarray
experiment. For example, for chip A2 of study S2 we could find that the mean is 232.4,
standard deviation 888.1, minimum –2000.7, and maximum 19792.8.

• 

P2. The mean and standard deviation of Avg Diff differences for all duplicate pairs.• 
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For example, the average and standard deviation of (B2 – B1) for all 13,179 genes in study
S2 may be –35.4 and 200.3, respectively. This tells us that, on average, a gene registers a
lower expression level in B1 in contrast to experiment B2. The standard deviation may be
informally regarded as an inverse indicator of reproducibility of the replicate readings. This is
not strictly an intra−array calculation.
P3. The distribution range of Avg Diff values on each chip.• 
P4. The distribution of genes which have J (J d 4) many Present (P) Abs Call. For instance
in study S2, 2547 genes have a P call in all experiments, 4112 genes have Absent (A) calls
throughout all experiments, and 3792 genes have exactly three A calls in all four
experiments.

• 

Gross overall data statistics like the above can quickly be used to detect systematic inter−chip
differences. For instance, if the genomicist in study S2 finds that for P2, the average replicate
difference (B1 – B2) was 11714.4, then he or she might have good reason to suspect that chip B1
was scanned at a much higher ambient or background setting than was B2. Such statistics have
been used as preliminary and very crude filters to reduce the number of potentially interesting
candidate genes in some microarray studies. For instance, the genomicist in study S2 could decide
that she would only consider (following P4) the 2547 genes which have P Abs Calls throughout all 4
experiments for more refined data analysis. Alternatively, the genomicist could accept only genes
whose Avg Diffs in some or all of the four experiments are above a predetermined cut−off value.
These kinds of filters have their weaknesses. In table 3.3.1, we clearly see that Gene 9784 would
be missing from the list of potentially interesting candidates for study S2 following the
all−P−Abs−Call filter, and yet from a cursory inspection of the raw data, and in the absence of
further analysis, it seems that drug X triggers a significant reported expression decrease in Gene
9784 from its control levels.

In general, any gross preliminary filtering of the sort above leads to a loss of information. Loss of
information is inevitable in typical microarray analyses and is not always a negative feature. After
all, microarray data analyses are essentially reductionistic by nature due to the problems of
irreproducibility as well as cost limitations in confirming candidate genes resulting from these
analyses. The relevance of the loss is context−specific. It depends upon the sort of information that
is lost and the scientific question being investigated. Gross statistics such as P1 and P3 have also
been used to "scale" or normalize one chip data set against another so that transformed numerical
indicators of expression intensity (Avg Diffs) are comparable in some probabilistic sense. This is the
gist of question Q1.

3.4.1 Normalization

We shall use the term normalization to, informally, refer to the transformations that are applied onto
data sets from chip experiments to render them comparable to one another in a probabilistic or
statistical sense, or to take into quantitative account assumptions about how these data were
generated. Normalization of a collection of different data sets is typically carried out with respect to
a reference data set. The reference set could either be data from one particular experiment, or a
postulated distribution of expression intensities. The following are three normalization methods in
common practice:

N1. Linear regression• 
N2. Probabilistic distributions: first, second or k−th moments• 
N3. Housekeeping genes, and spiked targets• 

The choice of transformations will depend upon assumptions that are made about the properties of
individual data sets such as intensity distribution and the behavior of noise. This will subsequently
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influence the characterization of expression or fold change significance at later stages in the
analysis.

Linear regression Our discussion will first focus upon the assumptions correctable by linear
transformations, N1. Referring to study S2,let xi and yi denote the reported expression intensity (Avg
Diff) of Gene i in the duplicate experiments B1 and B2 respectively with i = 1, … , N, where N =
13,179 is the total number of unique probes on the Mu11K chip set. Let B1 be the reference data
set. For notational clarity, let  denote the vector of gene−ordered intensities in a chip experiment,
(x1, … , xN) in �N, and let  be the mean of the gene expression intensities xi in the

chip set B1.

Now consider for the moment a hypothetical situation where chip B2 has a systematic error in
relation to its (reference) duplicate B1 such that the Avg Diff for every Gene i, xi in B1 is remeasured
or reproduced in the B2 experiment as yi = ±1xi + ±0 for some real constants ±0 and ±1. A global
linear shift of this kind could arise, for instance, if chip B2 were scanned at a different uniform
ambient brightness from chip B1. Physically, ±1 is the magnification or dilation factor and ±0 is the
translation factor. A scatter plot of xi versus yi would then look like a discretized line of slope ±1 with
its vertical or y−intercept at ±0, provided that not all the xi are equal to a constant. Clearly,if chips B1
and B2 were ideal duplicates, then the points (xi, yi) would be aligned on a line of slope one through
the origin.

This graphical representation of our supposedly replicated raw data suggests an intuitive way to
resolve the hypothet ical problem. Knowing the values  ±1  and  ±0 ,  the transformation

 will correct this systematic difference in B2 with respect to B1 so that a
plot of xi versus  is a line of slope one through the origin (0, 0).

In the general situation, one usually has no a priori knowledge of the slope ±1 and y−intercept ±0 of
the xi versus yi scatterplot. Instead, the main task in this case is to determine the values ±0 and ±1.
Normally, one supposes that the data set B2 is most likely to be systematically differentfrom B1 by a
linear transformation just described, and assume that with B1 and B2 being duplicates that their
scatterplot should ideally approximate, in the sense of least squares, a line of slope one through the
(0, 0). Using standard linear regression techniques, one computes ±0 and ±1 for the equation of the
line which passes through the data (xi, yi) and which minimizes the sum of squared vertical or
y−errors between this line and the observed data points (xi, yi). In other words this line f(x) = ±1x –
±0, say, should minimize �N

i=1 (yi – f(xi))2. Solving for ±1 and ±0 using simple calculus, linear algebra
gives us the dilation and translation factors,

where |M| indicates the determinant of the square matrix M. The normalization transformation then
is . As an additional bonus, note that the averages of the normalized set
B2 and the reference set B1 are equalized, i.e., . Verify this. Question: Are their
respective standard deviations the same?

Variations of N1 that have appeared in the literature include using a subset of genes for the
regression calculation as, for instance, using only genes which have present Abs Calls in both the
B1 and B2 sets, or excluding data points (x i, y i) when either x i or y i lie below a threshold.
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Furthermore, if one supposes that the microarrays assay a large enough number of different genes
and that the subset of these genes whose expression levels change significantly between
conditions A to B is small compared to the total number of genes being measured, then one may
also also normalize pairs of experiments Aj, Bj which are not true biological replicates. A useful
exercise: Let us say that we have normalized data A1, A2 via N1 with respect to B1 to produce

 separately. Is the linear regression of data  versus  a line of slope one through (0;
0)? What happens when  and , regarded as ordered vectors in �N are orthogonal to

one another?

Probabilistic distributions The second category of normalization schemes N2 operates under the
premise that the distribution of expression levels or Avg Diffs in each chip experiment, or more
stringently for duplicate sets of experiments, should be identical. Consider again the data sets B1 =
{xi}N

i = 1 from table 3.3.1. Several studies in the bioinformatics literature have applied the standard
central limit theorem−type transformation, , on each experimental data
set. Here, Ãx denotes the standard deviation for the B1 data set. so that the transformed data B1 will
now have mean 0 and variance 1. Exercise: Consider another data set B1 = {yi}N

i = 1 that has been
normalized similarly . Show that the linear regression of  versus 

is a line of slope  through the (0, 0). Here Cov(. , .) is the symmetrical

covariance function.

Note that this approach of setting the first two moments of each data set to constants does not
guarantee that all the transformed sets of intensities have the same distribution, unless the original
data sets were gaussian−distributed to begin with, in which case they would be completely
characterized by their first (mean) and second (variance) moments. As an aside, it may be useful to
check whether an arbitrary data set is indeed gaussian−distributed. We do this qualitatively with a
quartile−quartile plot between the test data set and another data set of the same cardinality that is
known beforehand to be gaussian−distributed. A gaussian−distributed data set can be generated
using the pseudo−random number utility on most computing machines [144]. These two data sets
are first individually ordered by magnitude and then plotted pairwise; for example, if these ranked
data sets of cardinality n looked like {si}n

i = 1, {ti}n
i = 1, then we plot (si, ti). If B1 is gaussian−distributed,

then its quartile−quartile plot against a gaussian−distributed reference set will be linear.

On equating the statistical moments of any two data sets, the reader should also note that even if
two distributions share the same kth moments for all integral k, it does not imply that the two
distributions are the same (or in the probabil istic parlance, almost surely equal). As a
counterexample from Casella and Berger [42], the distributions with probability density functions

 and f2(x) = f1(x)[1 + sin(2À log x)] have k moments that agree; we
clearly see from their graphs that these are different distributions. Furthermore, Press et al. [144]
have observed that it is not uncommon to encounter real−life data sets that have finite means but
arbitrarily large second moments. The reader ought to be aware of the existence of such
pathological cases. These cases are not central to our discussion and the interested reader is
referred to [144] for details. Less stringent variations of this normalization scheme are also in
common use; e.g., methods which equalize only the first moments (means) of intensity data sets as,
for instance, , or , where the mean of the data set {y i}n

i = 1 is

transformed to coincide with the mean of a reference set {xi}n
i = 1, by a dilation or a translation.

Housekeeping genes and spiked targets The N3 category of normalization devices works on the
assumption that certain probes or targets have a known constant hybridization behavior throughout
all experimental conditions. For example, exact amounts of particular mRNAs are incorporated or
spiked into the target that have a previously known and deterministic effect on specific probes on
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the microarray under any condition. These special genes could function as housekeeping devices in
any chip experiment. In this context, the normalization technique typically amounts to
transformations on whole data sets, which will narrow or eliminate the statistical divergence in
expression intensity values or Avg Diffs of these housekeeping genes across experiments.

General assumptions and principles of normalization The normalization methods that are
outlined above postulate a linear and systematic nature in microarray measurement errors, and
assume that every target−probe complex behaves in a similar manner, i.e., hybridization rates are
equal and independent of the transcript sequence. More general normalization techniques which
are nonlinear or nonparametric have been described [156, 182]. Alternative normalization
techniques for microarray data sets in the literature have included the use of eigenvectors [5], a
scatterplot smoother [61], normalizing by both sample and gene [81], and mapping the expression
data into a real interval between 0 and 1 [193].

Again, we emphasize that the choice of normalization procedure depends entirely upon the
postulates, particularly in the noise−related assumptions that one makes for a set of microarray
experiments. Recall that we had originally visited the topic of normalization with the aim of resolving
Q1, i.e., whether order relations (i.e., d, >, =) between inter−chip Avg Diffs for a gene as is imply a
comparison of the true inter−chip expression level of a gene across different chip experimental
conditions. While normalization techniques like N1 attempt to correct global and deterministic
measurement errors which have the form of a linear transformation, it does not resolve the
stochastic component of the error, in other words, error or variations due purely to chance.
Chance−type errors are often subsumed under the term noise and are almost always modeled as a
stochastic process. Graphically, stochastic effects are reflected by the scatter pattern of data points
about some line of regression, as one sees in figure 3.15. In accounting for noise, the genomicist
would often makes assumptions regarding the stochastic model. For instance, she or he could
postulate that the repeat measurements are random variables of intensity−dependent gaussian
distributions whose means lie along the regression line and possess a uniform standard deviation.
Methods like N2 implicitly assume that each microarray data set is a set of samples drawn from a
probabilistic distribution which is strongly characterized by its first k−moments. This and other
modeling assumptions of the noise effect can naturally be used to determine the significance of a
change in the expression level of a gene which we will discuss in an upcoming section on fold
significance. The reader is advised that even after applying any one of the normalization techniques
above, it might not make sense to extrapolate order relations of the true expression levels across
experiments or conditions from order relations on the numerical microarray data.

In view of this, one might begin to ask whether there is a weaker notion of inter−chip comparison.
That is, while we cannot definitely claim that the true expression level for Gene 9785 under
condition B2 is greater than in B1 because the Avg Diff value for Gene 9785 in B2 (141.2) is greater
than in B1 (110.7), can we derive meaningful biological comparisons of expression levels from the
data pair (110.7, 141.2) at all, or at least within some statistical or probabilistic framework?

Consider the scatterplot of the replicate data sets B1 and B2 with points (xi, yi) where xi  B1 and yi
B2. Assume that the replicate measurement for any gene is a random variable which is
characterized by gaussian distributions whose means are expression intensity dependent and have
a uniform standard deviation along the line of regression. In this situation, it is reasonable to expect
the data points to be mainly clustered within a 1−standard deviation envelope of the regression line.
The outliers or data points which lie outside or away from this 1−SD envelope may be interpreted as
genes whose expression intensity report or Avg Diff reproduces poorly across replicate
experimental conditions. So, even though an order relation in the Avg Diff values does not imply a
same−order relation between the corresponding true expression levels, the coordinates of the data
(xi, yi) can be an indicator of reproducibility of a microarray assay depending upon the postulated
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underlying noise distribution in the system. Next, we consider the scatterplot for the data set pair
(B1, A1), assume as previously that measurement errors are gaussian distributed about a regression
line, and similar to the above we define the outliers as data points that lie outside the 1−SD
envelope away from the regression line. Then a naïve interpretation of the outliers in the (B1, A1)
plot which are not outliers in the (B1, B2) plot is that these are genes that have a expression change
in going between states A and B that is less likely to be due to measurement error or noise. We can
also naturally assign a magnitude to this expression change by considering the number of standard
deviations the outlier in the (B1, A1) plot lies away from the regression line. This subject rightly
belongs under the topic of gene expression change or fold significance which is explored in the next
section.

3.5 Background on Fold

In this section, we describe several approaches to resolving the second question Q2 posed in
subsection 3.3.1. That is, how would one characterize an expression level or a fold change between
different experimental states, for instance, preversus postintervention, in our ongoing example study
S2, that is most likely or significantly due to changes in the biological state of a target rather than to
measurement error or noise.

Most methods that have been presented in the bioinformatics literature assume that, with all probes
being equally effective, a gene which has a statistically larger change in expression level is more
likely to have that change due to a difference in biological state rather than to noise. It should be
noted, however, that unless we have enough replicate measurements to be able to determine the
robustness of a gene expression reading, we cannot entirely rule out the possibility that noise may
cause large changes in reported expression levels. Conversely, not all small changes in expression
level are produced by noise alone and, in fact, gene expression changes which are below a preset
threshold of noise might very well trigger significant physiological effects in a system. Typically,
biological states are macroscopic in scale, and transitions from one state to another are, arguably,
continuous phenomena, whereas noise occurs at microscopic scales and is discontinuous.

For an informative contrast and guide as to how one might proceed in microarray fold analysis, let
us briefly review how fold change for a particular mRNA transcript is determined using the traditional
Northern blot. Typically in a blotting run, one starts by isolating total RNA on the order of 10 ¼g per
gel lane from the system of interest. Each gel lane corresponds to an experimental or replicate
condition. Depending on the gel lane to be loaded, the sample load may be spiked with standard
controls such as glyceraldehyde−3−phosphate dehydrogenase (GAPDH) for background
normalization or loading control calculations. The gel loading step is usually performed manually in
approximately uniform quantities. An electric current is passed through the gel complex and by
electrophoresis, RNA fragments will move at different speeds in the complex according to their size.
Afterward, separated RNA is transferred from the gel onto nitrocellulose membrane to produce a
blot. Labeled probes are constructed with radioactivity−labeled nucleotides and are designed to be
specific to each RNA. The control and test RNA samples are incubated with the probes. The blot is
then washed to remove probes that have not specifically hybridized, exposed to an X−ray film, its
image scanned, and the intensity fold change quantified by a molecular or phosphor imager.

In each gel lane, the intensity of the mRNA of interest is first normalized with respect to its loading
control probe intensity. Rather than an absolute and precise quantification, it would be more
appropriate to describe the task of the phosphor imager as fold estimation. In the scientific literature,
it is common to quote integer−valued fold changes such as 2 or 100. It is rare to find reports of
1.01− or 10.307−fold in the literature. For the average biological scientist, these numerical fold
values have a qualitative rather than a precise quantitative meaning. At each stage of the blotting
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protocol, many occasions exist for error and noise to enter into the analysis and subsequently into
the final scanned image and quantification, in ways that are not entirely understood or avoidable,
that would render a 10’  precision of folds biologically redundant or meaningless unless one
possesses the error statistic for the blotting and imaging protocol. Another factor governing fold
precision is the machine sensitivity of the imager. Recall the setup for a typical microarray analysis.
As observed previously, a chip experiment may be regarded as the reverse of performing ~ 104

different Northern blots in parallel on a common two−dimensional substrate of area ~ 10” m2 of
probes upon which one hybridizes the labeled target. Each microarray probe set would correspond
to its associated mRNA sample in one gel lane without the loading control and, in the case of
Affymetrix oligochips, with an additional set of mismatched probe controls for nonspecific
hybridization. Each whole chip has its set of control or housekeeping probes corresponding to the
loading control in a gel lane of the Northern blot.

In view of their similarities, one may reasonably expect any noise and reproducibility issue affecting
a Northern blot to manifest itself as prominently in a microarray experiment. Due to the microscopic
dimensions of each probe feature on a microarray, small irregularities during scanning or fabrication
could lead to discontinuous and possibly contradictory outcomes that might not be immediately or
practically detectable from among 104 other distinct probes. It is equally instructive to reexamine the
starting points for the representative fold calculations in both the Northern blot and microarray
technologies.

For microarrays, fold analysis starts off from the level of a text file (e.g., a .chp file in the case of
the Affymetrix technology) which contains information such as a probe identifier and corresponding
indicators of the level of sample probe or transcript that was detected. Theoretically, this text file is a
numerical representation of the scanned chip image, specifically of its detected levels of different
RNAs, and is generated by the chip manufacturer's software program which implements (often)
proprietary statistical image−processing algorithms that are typically opaque to the user. There is
always some loss of information in going from the true image to its machine image file, and to the
numerical representation of the image file. The relevance of this loss is, of course, context−specific.
Normally, in chip data analysis, the bioinformatician will perform statistical tests, classification, or
clustering algorithms based on these preprocessed numerical representations of RNA levels alone.
Thus the generic chip data analysis conclusions are at least twice removed from the source or
microarray image of RNA levels.

In contrast, the end product of a Northern blot analysis is an X−ray film or an image of the blot, and
an estimated quantification of fold change for the RNA of interest after the image is processed by a
phosphor imager whose working principles might appear to be more transparent and seem closer to
the physical phenomenon under investigation. With microarrays, it is possible to begin fold
calculations from their image file. First, this approach may require the bioinformatician to develop
his or her own image−processing program which might mean that he or she would have to acquire a
working knowledge of several specialized disciplines, including image analysis and software
engineering, which is a daunting task in itself. Second, the bioinformatician will need to obtain
specific information from chip manufacturers about probe identities and their respective coordinates
on the array for every different make of chip that he or she will use. Creating this dictionary
location−probe feature lookup may be time−intensive, as in the case with some Affymetrix
oligonucleotide microarrays where each probe set of 16 to 20 for a transcript is split up and
dispersed throughout the physical array.

It should be noted that while the use of the fold or ratio of intensities is a natural way to quantify
relative changes in expression level within the framework of Northern blots, it might not be an
appropriate relative measure nor might it retain the same meaning when ported over as is into
microarray data analysis. In calculating the fold change for a gene between conditions A and B as
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assayed by micrarrays A1 and B1, one would very frequently and simply take the arithmetic ratio
numerical representation of reported gene expression in the A1 and B1 chips. There are problems in
doing this. For instance, Affymetrix represents the intensity of a transcript by the Avg Diff which may
be a nonpositive number in which case the ratio of nonpositive quantities is physically meaningless.
Taking the data from study S2 for example, how does one quantify the fold of Gene 9784 from
duplicate states B1 (–4.6) to B2 (18.3)? Furthermore, the ratio is not defined when the denominator
is zero. For clarity, we shall mainly concentrate on examples of fold analyses on the .chp text files
in the Affymetrix technology of study S2.

3.5.1 Fold calculation and significance

The discussions in this section refer to study S2. A prototypal question concerns whether the
expression level, as represented by Avg Diffs, of Gene i is significantly different between states A
and B. By significance one almost always means statistical significance—specifically, a difference
that is unlikely to be due to measurement errors or noise, modeled as a random process that is
characterized by a postulated probability distribution which is in turn derived either from the replicate
data or some null hypothesis. The delicate point here lies in deciding on a consistentand
well−defined criterion for statistical significance, and more fundamentally on the choice of a null
hypothesis.

Similarly to the normalization procedure, diverse approaches exist to account for different
assumptions and postulates about the initial condition of the biological system, the behavior of the
target−probe complex, and the constitution and properties of noise. As detailed in [144] for a more
general applicational framework, these approaches typically start off by computing a set of statistical
parameters or statistics from the empirical data such as means, variances, and kth moments which
define a test distribution. This is followed by a choice of a suitable null distribution and some
calculations to decide where the parameters fall within this null distribution, i.e., comparing between
the test and null distributions. If the test statistic falls in a probabilistically unlikely region on the null
distribution, then one may conclude that the null hypothesis is false for the data set, which in this
context means that the data or test distribution is statistically different from the postulated noise or
null distribution. As emphasized in [144], the reader should bear in mind that one can only disprove
a null hypothesis, never prove it. That is, the fact that a data statistic falls within a probabilistically
likely region of the null distribution does not imply that the fold is equivalent to the postulated noise
effect. When the number of samples used for calculating a statistic is reasonably large, a difference
of means that is less than the standard deviation may be significant. Whereas when samples are
sparse, a difference of means that is much larger that the standard deviation may not be significant.
This fact is relevant considering that the generic microarray study typically uses a small number of
expression data per gene, corresponding to different experimental or replicate conditions, for
calculating the statistic of the gene.

From study S2 suppose that the data sets {Aj}MA
j = 1 and {Bj}MB

j = 1 have been suitably normalized
following any of the methods outlined in the last section. In order to avoid the clutter of notation, we
will use the same symbols Aj, Bj to denote the un−normalized and normalized data sets; the
assignments should be clear from the context. Let Ai

j denote the Avg Diff for Gene i as assayed by
the microarray Aj. Define Bi

j likewise. First, there are several ways to compute the fold statistic, e.g.,
the mean, of the Gene i (i = 1, 2, … , N):

F1. Average of Aj over the average of Bj:• 

F2. If MA = MB = M: • 

F3. More generally in F2:  where Ã is any permutation on the• 
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set {1, 2, … ,M}

Some studies have alternatively chosen to compute the fold of Gene i from states A to B as 

instead of  as above. In order to resolve the problem of non−positive−valued Avg Diffs, it is

commonplace in the literature, before taking arithmetic ratios, to threshold the Avg Diff values in
every chip data set to an arbitrarily chosen minimum positive number, as e.g., in setting all Avg Diffs
of less than 10.0 to 10.0. Alternatively, some studies translate all the intensity data in a chip data set
so that the minimal translated Avg Diff in each set is positive. For example, if the minimum element
in the A2 data set is –2000.7, then when 2001.7 is added to every Avg Diff reading in A2, all the
translated Avg Diffs will be positive−valued. Note that such solutions will skew the intensity statistic
of the microarray data which is not always a desirable thing. For symmetry reasons, the logarithm of
folds rather than just the folds alone are averaged. Consider the data for Gene 1 un−normalized:
From A1 to B1, the intensity of Gene i changed 2.0 −fold, whereas from A2 to B2, it changed
0.5 −fold so that on average the intensity of Gene i should intuitively be unchanged, i.e.,

have a fold change of 1.0. However, it is obvious that the arithmetic average of 2.0 and 0.5 does not
equal 1.0. A logarithmic transformation of the individual folds solves this problem, as does the use
of the geometric rather than the arithmetic mean of the folds.

As an exercise, the reader should verify that the order of taking logarithmic ratios in F2 and F3 does
not change the resulting fold, ¼Gene i. After computing the fold of all genes in the data set in any one
of the preceding ways, one typically wants to know whether a fold average or a fold distribution is
different from, or statistically significant in relation to, a postulated null distribution which represents
the effects of measurement errors or noise. As we have already noted, it is essentially the choice of
the null hypothesis which distinguishes the different methods for determining fold significance.
Some studies associate the null hypothesis with an interval of nonsignificance informally called a
noise envelope. The distribution for the null hypothesis has also been calculated from the
microarray data set permuted, especially when the number of replicate data points is small. In
general, replication improves the estimation of the null distribution. Below, we outline several
common null distributions:

G1. A null distribution for each Gene i whose mean is obtained by averaging latitudinally
across duplicates, 

• 

G2. A null distribution for all genes whose mean is obtained by averaging longitudinally
across all N genes, 

• 

G3. For each gene row, permutation of the intensity data, for instance, exchange data
between conditions A1 ” B2, etc., and then recalculate G1.

• 

A coarse, qualitative method may combine F1 and G2 to decide that a Gene i with ¼Gene i >
max(¼A; ¼B) or ¼Gene i < – max(¼A; ¼B)) is significantly different, foldwise, from the average fold
statistic resulting from noise as calculated from duplicate conditions. Another approach could be to
rank the N genes by their ¼Gene i value from F2 and to decide that the top and bottom 5% of these
ranked genes are significantly changed.

There exist equally diverse non fold−centered methods for determining the significance of a change
in expression. The intuitive idea behind all these approaches is to call a change statistically
significant if the expression change inter−states A and B is maximal, and the expression change
intra−state within the replicate conditions {Aj}MA

j = 1 and {Bj}MB
j = 1, respectively, is minimal. Again, the

choice of a null distribution representing the postulated noise distinguishes these methods. Being
non fold−based, traditional parametric and nonparametric statistical tools for analyzing means or
variances between data groups such as the Ç2, Student t, Mann−Whitney, and F tests and ANOVA
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have been applied in the literature. These methods are reviewed comprehensively in [144] and the
reader should be aware of the implicit assumptions and underlying null hypotheses in these
standard tests prior to application. A drawback to these traditional approaches is that their
conclusions are "asymptotic", i.e., they are statistically valid only when one has a large number of
replicate data.

At the end of the normalization section 3.4, we had briefly described a way to graphically visualize
the determination of significant difference in expression data between A1 and B1. To reiterate, on
the scatterplot of the un−normalized data sets A1 versus B1, we compute and draw the linear
regression line. If chip assay reproducibility is reasonably robust and if we assume that the majority
of genes do not undergo a dramatic change in expression level in going from state A1 to B1, then
the data points should cluster close to this regression line which should have slope one and should
pass through (0, 0). The envelope of a standard error or deviation spread away from the regression
line is our object of interest. This 1−SD envelope may be defined by a pair of lines that lie along a
horizontal distance  to the left and right of the regression, f(x) = ±1x + ±0.

The intuitive reasoning here is that a data point which is outside this envelope is a statistically
insignificant event relative to a postulated stochastic distribution, usually gaussian, of the data
around the regression line due purely to noise (chance). Such an outlying data point represents, in
the reverse context, a gene which has undergone a statistically significant expression change from
A1 to B1.

3.5.2 Fold change may not mean the same thing in different expression
measurement technologies

In one common experimental design, DNA microarrays are built by printing or spotting an array of
cDNA on a glass slide, which provides gene−specific probes for hybridization to targets. Two
different samples of mRNA are labeled with different fluorescent dyes and simultaneously
hybridized onto each probe. The data for each probe (gene) consists of two fluorescence intensity
measurements, typically red and green, representing the expression levels of the same gene in the
red−labeled (with the dye Cy5) and the green−labeled (with Cy3) mRNA samples. Early analyses of
the data obtained through these microarrays will identify differentially expressed genes by taking the
ratio of red intensity to green intensity, i.e., the intensity ratio, and choosing an arbitrary cut−off
above or below which the genes will be interpreted as being differentially expressed in the two
samples. The crucial point is that one typically does not use the absolute measure of intensity, but
uses, instead, the ratio or degree of difference between samples.

In one of the earliest uses of this design, Schena et al. [157] called a gene differentially expressed if
the expression level in the two mRNA samples differed by more than a factor of 5. DeRisi et al. [56]
called genes differentially expressed if the logarithm of their ratio differed by more than a factor of 3,
after standardizing the intensity measurements using a set of "housekeeping" genes. More recently,
sophisticated statistical techniques have been developed to provide more reliable calculations of the
intensity ratios by taking into account the distribution of the intensities across the whole microarray.
In the first statistical analysis of these data, Chen et al. [45] proposed a method to identify
statistically significant changes between the two mRNA samples, under several assumptions on the
distribution of the intensities, including normality, null intercept, and constant variation coefficient.
Newton et al. [135] offered a bayesian approach to the problem, using a hierarchical model for
intensities and identified differentially expressed genes on the basis of the posterior odds of change.
It is worthwhile to mention that Arfin et al. [11], in a study involving cDNA arrays expression profiling
of E. coli, found little correlation between fold difference in the reported expression levels of a gene
and its accuracy.
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Using synthetic oligonucleotide microarrays, on the other hand, one identifies differentially
expressed genes by comparing expression measurements made on two separate microarrays. On
these microarrays, there is no simple measure of intensity: instead, 16 to 20 probe pairs are used to
interrogate each gene. Each probe pair has a PM and MM intensity signal. In an ideal setting, if a
gene is truly present, each of the PM probes would have a high intensity and each of the MM
probes would have a near−zero intensity. The ratio PM/MM closely resembles the intensity ratio
used with spotted microarrays; however, here we are using this ratio to determine an absolute
expression level for this gene. Since each gene is represented by many probe pairs, the average
log(PM/MM) is called the Log Average Ratio. A probe pair would be considered positive if PM � MM
is greater than or equal to a threshold, and if PM/MM is greater than or equal to another threshold
(similarly, MM � PM and PM/MM are calculated in considering a probe pair negative). The average
of the PM � MM differences for all probe pairs in a probe set is called the Average Difference, and
this value is used as the absolute amount of expression for a gene.

In order to determine whether a gene expression is significantly different, current experimental
protocols require the (possibly repeated) pairwise comparison of two microarrays, each hybridized
to each of the different samples being compared. The intensity ratio used in the spotted arrays is
thus replaced by the indirectly calculated ratio between the the average difference of each gene in
the two different arrays. Typically, a cut−off threshold is arbitrarily selected between 2 and 3 (see,
e.g., [97, 198]). That is, the expression level of a gene will be considered differentially expressed in
an experiment if the (indirectly calculated) average difference is two or three times higher in one
microarray than in the other. However, this threshold has been set as low as 1.7 [117].

The major manufacturer of these microarrays [10] provides software implementing a different
measure of differential expression. Let x represent the average difference of a gene on one
microarray and y its average difference on the second microarray. For each gene, the level of
change across the two microarrays is computed by a weighted ratio:

If y e x, then +1 is added to W, otherwise W –1. Qc is the maximum noise level of the two
microarrays, or the difference in pixel intensities seen in the lowest intensity probes, and Qm is a
constant depending on the resolution of the microarray—2.1 for 50 ¼m feature microarrays and 2.8
for 24 ¼m feature microarrays. However, the decision of whether a gene is significantly differentially
expressed in the two microarrays is based on a complicated interpretation of the change of each of
its 14 to 20 probe pairs. Let (PM � MM)x be the difference between PM and MM for a probe pair in
the first array and (PM � MM)y be the same difference for the same probe pair on the second array.
A probe pair shows a significant change (increased or decreased) across two microarrays if:

the difference (PM � MM)y − (PM � MM)x is higher than an arbitrary threshold called the
Change Threshold, and

1. 

the ratio,  exceeds another arbitrary threshold called the

Percent Change Threshold, where Q represents the noise on the chip.

2. 

Given this definition of a significantly increased or decreased probe pair, a gene is considered
significantly differentially expressed based on four aggregate measures:

The number of increased or decreased probe pairs, which ever is higher.1. 
The ratio of the number of increased probe pairs to the number of decreased probe pairs.2. 
The difference or subtraction of the log average ratios of the gene in the two microarrays.3. 
The difference in the number of positive probe pairs minus the difference in the number of
negative probe pairs, divided by the number of probe pairs.

4. 
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The decision of whether a gene is significantly differentially expressed between two microarrays is
decided by a user−modifiable matrix indexed by the above four results. The user can set thresholds
to define the boundaries where each metric changes the decision. Default values for these
thresholds have been set by the manufacturer through in−house empirical testing.[5] Since
systematic variations are expected to occur between any two microarrays—due to biological noise,
changed environmental conditions, or other factors affecting equally all genes on an array— various
normalization techniques are used to render comparable the expression levels across the two
microarrays. Section 3.4.1 discusses the various techniques used.

It should be clear that there is a great deal of difference in the interpretation of intensity
measurements, intensity ratios, and gene expression levels across the two systems.
Fundamentally, spotted arrays are currently used to measure a difference in transcription levels
between two samples, whereas oligonucleotide arrays are used to measure absolute transcription
levels in a single sample. Even if one discounts the differences in the quantitative and differencing
algorithms, it should be obvious to the reader that the "results" of an experiment involving spotted
arrays are going to be significantly influenced by the choice of the reference or control sample,
already implying that the resulting values are not directly comparable.

[5]As complicated as this methodology sounds in our description here, we are ignoring the fact that
in the actual algorithm, not all available probe pairs are used in these calculations. Probe pairs with
an intensity difference significantly beyond the mean intensity difference are considered outliers and
are ignored in these calculations.

3.6 Dissimilarity and Similarity Measures

In time course studies such as study S1, it is natural to talk about how two genes Gk and Gj are
(dis)similar to one another with respect to their expression levels sampled in time. In the
bioinformatics literature, a gene and its corresponding expression levels are often represented as a
data point or a vector in �k, where k is a positive integer (denoted by ). Each vector component or
coordinate slot denotes the expression level of that gene under a different experimental condition
with k conditions altogether. A measure of similarity or dissimilarity such as a metric is then defined
on �k which maps pairs of vectors, representing genes and their corresponding expression
information, to real numbers. When the number of genes and the expression data set are very
large, as in most micro array experiments, one often asks which genes or groups of genes behave
similarly under these k different or replicate conditions. In an attempt to answer this question, one
resorts to classification and clustering methods, and of particular importance prior to the analysis,
one has to define what one means by the term similar. Similarity is characterized by the choice of a
(dis)similarity measure, such as a metric.

As noted by Jain and Dubes [101], a cluster method takes as its input a finite data set  of at least
p (p > 2) elements together with a list of finitely many attributes of these data, or, alternatively, it
may consist of a measure of similarity or dissimilarity between pairs of objects in . The output is
an internal structure of , which is determined entirely by the input and not dependent on any
external criterion. Following [103], even though there is no universal agreement in the field with
regard to terminology, when the rules for determining the output are externally defined, the
algorithm will be called a classification rather than a cluster method. For example, suppose that we
have for our set  microarray data which are represented as points in �3 , i.e., equipped with the
standard Euclidean distance, a metric. Then, a cluster method would ideally yield groups of genes
which are physically close (in Euclidean distance) to each other, and hence behave similarly over
three conditions, forming very tangible visual clusters when plotted. On the other hand, questions
such as which genes appear in the first octant of �3 would fall under the classification category. The
distinction between the terms clustering and classification is not purely of academic interest.
Clustering algorithms generally have a higher order of complexity, and are therefore more
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computationally intensive, than classification methods. We begin the discussion of (dis)similarity
measures with several formal and standard definitions. Let  be any nonempty set.

Definition 1 A function  is a metric if for all 

M1. Á(x, y) = 0 if and only if x = y (definite).• 
M2. Á(x, y) d Á(y, x) (symmetrical).• 
M3. d(x, y) d Á (x, z) + Á (z, y), for all  (triangle inequality).• 

Some examples of common metrics are:

Let . The classical Euclidean distance,  for any

, where x = (x1,…,xn), y = (y1,…,yn).

• 

Let . −type distances with  for any

. When p = 2, we have the preceding Euclidean distance.

• 

Suppose that  is the set of real−valued continuous functions on the closed real interval [0,
1]. Let , and Á(f,g) = maxx
[0,1]|f(x) � g(x). Exercise: Confirm this.

• 

The distance between two random variables X and Y , Á(X, Y) = H(X, Y) – H(X; Y) where
H(X, Y) is the joint entropy of X, Y , and H(X; Y) P H(X) – H(X|Y) is the mutual information
between X and Y , a symmetrical function. An overview of entropy and information−theoretic
concepts is presented in subsection 3.6.2. We refer the interested reader to Cover and
Thomas [54], for a detailed review of information theory.

• 

The reader should be warned that there is a widespread misuse of the terminology metric in the
current bioinformatics literature to include functions such as the linear (Pearson's) correlation
coefficient and mutual information. It is a simple exercise to show that these functions do not satisfy
the axioms of a metric. Next we define a weaker class of functions than the metric, a dissimilarity
coefficient.

Definition 2 A dissimilarity coefficient is any function  which satisfies two axioms:

D1. d(x, x) = 0 for all .• 
D2. d(x, y) = d(y, x) for all  (symmetric).

A dissimilarity coefficient d is definite if it satisfies a third condition:

• 

D3. d(x, y) = 0 if and only if • 

Any metric is a definite dissimilarity coefficient, and note that 1 � r, where r denotes the linear
(Pearson's) correlation coefficient is a definite dissimilarity coefficient. Exercise: Confirm these.

3.6.1 Linear correlation

Given data points (xi, yi) for i = 1,···, n, it is common to ask whether a linear relationship exists
between the quantities xi and yi, and to what degree are the data linear, at least statistically. The
graphical equivalent would be to ask whether the scatter plot of x i versus y i looks l ike
(discretizations of) a line. The linear or Pearson's correlation coefficient r is the mathematical device
that is most often used to do this,
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where  denote the means of xi, yi respectively. As an aside, observe that,

In other words, r is the geometric mean of the slope of the linear regression of x versus y and the
slope of the linear regression of y versus x, denoted ±(x,y)

1 and ±(y,x)
1 respectively. By the

Cauchy−Schwarz inequality,

where  is the standard dot product on  and ¸ is the angle

between vectors x and y, it can be shown that,

r = 1, if and only if, x = y; x, y are positively correlated,

r = ‘, if and only if, x = �y; x, y are negatively correlated.

Suppose that one regards x, y as random variables with samples xi, yi indexed by i = 1,···, n. If x and
y are stochastically independent, then r = 0. The converse is not generally true, as, e.g., when we
take ti = i Å 2À/n, xi = cos ti and yi = sin ti for any integer n. Exercise: Verify this. When r is near 0, x
and y are said to be uncorrelated. A review of the concept of stochastic independence may be
found in Shiryaev [163]. Note that r has a nonrigorous transitive property such that if x and y, and y
and z, are strongly correlated with correlation strength rx, y and ry,z, x and z have correlation strength
r. As noted by Press et al. [144], while r provides a summary of the strength of the association if the
correlation is found to be significant, r is not generally useful for deciding whether an observed
correlation is statistically significant. This weakness arises from the fact that the computation (3.6.4)
ignores the distributions of x and y. One solution to this problem is to use nonparametric or rank
correlation, which details are also found in [144]. It can also be shown that r is more sensitive to
small perturbations of data points that are farther away from the centroid of the system than to
perturbations near the centroid. This may result in a bias. Linear correlation has been used to find
pairwise associated genes across different experimental conditions, as in [63].

3.6.2 Entropy and mutual information

Suppose that we have the expression information for a pair of genes Gx, Gy across n experimental
conditions. In the most extreme cases, the expression of Gx and Gy may be completely dependent
(if this dependence is linear, this implies that r = ±1), or independent (which implies that r = 0)
across these n conditions. Question: Can we measure or quantify the dependence of Gx and Gy

levels in this case? Equivalently, how much would the expression data for Gx inform us about the
corresponding expression of Gy, and vice versa? In this regard, we may appeal to relevant
information−theoretic and conceptual devices that were formulated to solve the fundamental
problem in communications of reproducing at the receiver endpoint, either exactly or approximately,
a message from the transmitter end point. The messages transmitted and received will correspond
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to the expression data of Gx and Gy in the biological scenario. Suppose that X is a random variable
with the set of events or outcomes , and corresponding probabilities P (X = xi = pxi

e 0. By definition, . Following Shannon [160], we want to find a measure

H(px1,···, pxn) of how much "choice" is involved in the selection of events, or of how uncertain we are
of the outcome. Intuitively and reasonably, we will require that H have the following three properties:

E1. H is continuous in pxi.• 
E2. If all pxi's are equal, i.e., , then H should be a monotonically increasing

function of n. With equally probable events, there is more choice or uncertainty in the
outcome when there are more possible events xn.

• 

E3. If a choice is broken down into two successive choices, the original H should be the
weighted sum of the individual values of the later H 's. For instance, let n = 3 and

, and we consider three possible decompositions of a

c h o i c e  o f  t h e  t h r e e  o u t c o m e s :  T h e n
.

• 

It can be shown that the only explicit form of H satisfying E1 to E3,

where K is positive constant. We let K = 1. We shall call H(X) the entropy of random variable X.
Consider the case of a Bernoulli random variable X, i.e., n = 2, with px1 = p and px2 = 1 – p where p
> 0. Then, when X is one−dimensional,

Using a base−2 logarithm, H plotted as a function of p is concave, non−negative, symmetrical and
has a maximum of 1 at p =1/2 (see figure 3.24).
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Figure 3.24: Entropy plot
As noted in [160], H has several interesting properties that substantiate it as a reasonable measure
of choice or uncertainty.

H1. H e 0 with equality if and only if all but one pxi = 0 and the non−zero event has probability 1.
Therefore, when we are entirely certain about the outcome H the measure of uncertainty vanishes.

H2. For any number of possible outcomes n, H is a maximum (log n) when all the pxi's are equal,
i.e., pxi = 1/n. Intuitively, this is the most uncertain scenario.

H3. Suppose that Y is a random variable with the set of outcomes  and

corresponding probabi l i t ies .  Let  px i , y j  be the
probability for the joint occurrence of X = xi and Y = yj. Define the joint entropy of X and Y to be

and by basic properties of marginals of joint distributions,

Exercise: Showthat H(X, Y) d H(X) + H(Y) with equality if and only if X and Y are independent, i.e.,
px i, y j = px ipy j. The uncertainty of a joint event is less than or equal to the sum of individual
uncertainties. Note that H(X, X) = H(X).
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H4. Any change toward equalizing the pxi's increases H. Computationally, any averaging operation,
 with a ik e 0 increases H—except in the

special case of a permutation where for every i all but one aik = 0, the non−zero constant being 1, in
which case H is invariant.

H 5 .  R e c a l l  t h e  d e f i n i t i o n  o f  c o n d i t i o n a l  p r o b a b i l i t y ,  .  i f
 An easy consequence of this definition is Bayes' theorem,

The conditional entropy of X given Y = y is defined as

where as the conditional entropy of X given Y is defined by averaging the H(X|Y = y) over ,

This quantity measures how uncertain we are of Y on average when we know X. The chain rule for
entropy can then be shown. Exercise:

Now following the exercise in H3,we can conclude that,

which says that on average our knowledge of Y does not increase our uncertainty of X. The reader
is encouraged to come up with a pair of X, Y such that H(X|Y = y) > H(X) but H(X|Y) d H(X). When X
and Y are independent, our uncertainty of X is unchanged; otherwise it decreases.

H6. The mutual information between X and Y is defined as

Exercise: Show that M(X, Y) e 0 and M(X, Y) = M(Y, X). Mutual information measures the average
reduction in uncertainty about X given that we have knowledge of Y, and vice versa by the exercise.
When X and Y are independent, M(X, Y) = 0, i.e., there is no reduction in uncertainty. At the other
extreme, when X = Y , M(X, Y) = H(X) so that we have reduced all uncertainty—H(X)—about the
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system. Here we also see that M is not a metric since M(X, X) ` 0. The distance between random
variables X and Y is defined as

Exercise: Show that D satisfies the three axioms of a metric in an earlier section.

H7. The cross or Kullback−Liebler entropy between the probability distributions px and qx over a
common space of possible outcomes  is defined as,

Note that in general, DKL(p, q) ` DKL(q, p).

In order to apply the preceding tools in the context of microarray data analysis, suppose that we
have the gene expression data for genes Gx, Gy across m different experimental conditions. Divide
the ranges of the Gx, Gy expression data into uniformly spaced n intervals or "bins." Let pxi be the
probability that the expression for Gx falls into the ith interval, and similarly for Gy. Suppose that
three out of the m different experiment intensities for Gx fell within the kth bin, then we let pxk = 3/n.
A graphical example of this is shown in figure 3.25.
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Figure 3.25: Graphical example of mutual information calculation. First, a scatterplot of the
expression measurements of the two genes is created, and a grid is imposed. In this example, each
expression measurement is quantized into four bins (one can think of these as "low," "low−medium,"
"high−medium," and "high," though anynumber and positioning of bins can be considered). The
entropy for each gene is then calculated using the row and column sums, and the joint entropy is
calculated from the grid.
3.6.3 Dynamics

Dynamics provides a powerful example of how the choice of the appropriate similarity measure can
affect the analysis of a genomic system. We use the term dynamics to refer to the rate of change of
genetic expression over time, calculated as the firstorder difference of the genetic expression levels
(Et2�Et1,Et3�Et2). This is different from the simple temporal pattern of genetic expression (Et1,Et2,Et3)
that we refer to as statics. The primary motivation for studying gene expression dynamics is that
existing static techniques may not identify all the important relationships. Some genes may have
associated dynamic behaviors but may not have associated static expression behaviors. A
hypothetical example is shown in figure 3.26: Gene A codes for an enhancer protein that regulates
the expression of Gene B—a high level of Gene A causes an upregulation of expression in Gene B.
Since Gene B can be at many possible expression levels before being affected by Gene A, the
enhancer−type relationship between the two genes cannot be noticed by simply examining the
correlation of static expression patterns. Instead, one needs to examine the dynamics of gene
expression—the way in which the expression level of Gene A leads to a change in Gene B—to
detect the underlying dynamic relationship. We therefore hypothesized that using dynamics
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measures as our fundamental similarity measure has the potential to discover relationships between
genes that are not detectable using static similarity measures.

Figure 3.26: Dynamic relationships between genes. (a) The expressed product of Gene A binds an
enhancer region that increases transcription of Gene B. (b) Gene B's initial expression level before
being affected by Gene A can vary throughout the experiment. As a result, measuring the
correlation between the absolute levels of Genes A and B will not reveal the underlying
enhancement relationship between the two. Instead, this can only be done by analyzing the
expression dynamics—the change in expression level of Gene B in relation to the expression level
of Gene A. (Derived from Reis et al. [150].)
Reis et al. [150] investigated the Saccharomyces cerevisiae mRNA expression data aggregated
from several experiments reported by Eisen et al. [63] in which the response of the yeast cells to
several different stimuli is recorded. The data contain 79 data points in 10 time series measured
under different experimental conditions. Of over 6000 genes in the yeast genome, Eisen et al.
included only 2467 genes that had functional annotations. We analyzed the same subset of genes
as described. Dynamics similarity measures were calculated as slopes of the change of expression
over time. Slopes were calculated between each adjacent pair of expression data points, Etn and
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 As slopes are only calculated between data

points within the same time series, the 79 data points in 10 time series are reduced to only 69 slope
measurements. The units of the slope measurements are in normalized expression level units per
minute. The authors found those pairs of genes that exceed a correlation coefficient of .78 based on
a permutation analysis (see section 4.12.1). We compared the pairs of genes found to be correlated
at that threshold or higher using both the standard static expression levels and the slope similarity
measures. We found that 133 genes appeared in both the static and dynamic analyses, leaving 215
genes that were exclusive to the dynamics analysis. However, only about half of the 133 shared
genes appear linked to the same genes in both analyses—most appear linked to other genes.

Of many examples, figure 3.27 shows the distribution of slopes between RAD6 and MET18 which
are highly correlated by the slope similarity measure but not by the static gene expression levels.
RAD6 is a ubiquitin−conjugating enzyme concentrated in the nucleus that is essential to mediating
the degradation of amino end rule−dependent protein substrates(21). MET18, also known as
MMS19, is a protein concentrated in the nucleus that affects RNA polymerase II transcription[150]).
These are inversely related in their dynamics, with an R2 of �.791. It is not surprising that a gene
responsible for protein degradation might have an inverse relationship to a gene responsible for
RNA transcription leading to protein synthesis. Again, the significance here is that the discovery of
this relationship depended upon picking the right similarity measure. Besides this one, there is
undoubtedly a large unexplored universe of potentially useful measures.

Figure 3.27: Negative dynamic correlation. The distribution of slopes of MAD3 and EXM2 plotted
one against another.
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Chapter 4: Genomic Data−Mining Techniques

4.1 Introduction

This chapter starts with an analysis of the components in molecular biology for which analysis can
be performed. We then move to defining genomic data mining and what it actually means
biologically to apply these clustering techniques in this domain. Although many analytic techniques
are currently available, one should clearly not apply these techniques blindly without some
hypothesis, so we discuss potential broad hypotheses one can start with. We then cover techniques
for data reduction and filtering. Using examples written in pseudo−code, we cover the most
commonly used techniques, discussing the advantages and disadvantages of each technique. We
will then address the postanalysis process, including determining significance through permutation
testing. Finally, we end with some thoughts on the automatic determination of genetic networks,
including bayesian networks.

4.2 What Can Be Clustered in Functional Genomics?

Before launching into a discussion of the var ious cluster ing algor i thms avai lable to
bioinformaticians, one needs to carefully consider the motivations behind data mining. Data mining
can be loosely defined as determining the relationships of the elements in a data set. Avariety of
objects in biology can be captured in functional genomics data sets, a few of which should be
mentioned here.

Genes: Certainly, the majority of functional genomics bioinformatics analysis involves
determining the relationships among genes. Genes can be clustered not only by gene
expression but also by gene sequence, nucleotide composition, linkage, and chromosomal
position. Genes can obviously be clustered using measurements from normal physiological
states, as well as abnormal or pathological states.

• 

Alternative splicing products: An increasing number of genes are now predicted to have
alternative splicing products, or a varying combination of exons. Various alternatively spliced
products could be clustered to assess their pattern of expression compared to each other.

• 

Tissues: Normal tissues can be clustered to assess their relative degrees of similarity or
dissimilarity. Unknown tissues, such as pathological specimens, could then be compared
with clusters of known tissues.

• 

Diseases: Tissues from single or multiple diseases can be clustered. What is currently
thought to be one disease may in fact be distinguishable into two or more subtypes.

• 

Phenotype: Cell lines, organisms, or patients can be clustered based on a series of
measurements on them, of which gene expression may be only one component.

• 

Patients: In medical informatics, patient clusters are distinguishable in many ways:
geographical location or home, presence or absence of a disease, the quantitation of
specific laboratory measurements, or details of a longitudinal course of medical care.

• 

Promoters: Transcription factors are known to bind these specific regions of DNA to cause
increased or decreased expression of the controlled gene. These could be clustered based
on sequence similarity or association with functional genomics measurements.

• 

Environment: Environmental toxins and factors can be clustered by the pattern of gene
expression, or the change in expression, seen after exposure.

• 

As diagrammed in figure 2.11, all of these data types may end up in a large heterogeneous data
table that can be used to advantage in the automated datamining techniques described below. It is
precisely the lack of a priori limitations or assumptions of which data sources and data types will be
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of clinical or biological interest that is one of the bulwarks of the genomic approach to discovery.

4.3 What Does it Mean to Cluster?

There are certainly laboratories that criticize data mining or clustering as a "fishing expedition,"
believing that the analytic technique starts with absolutely no hypothesis. There are also
laboratories that apply every existing clustering method to their microarray data sets, hoping to find
some "significant genes or clusters." The ideal analytic method lies between these two approaches.
Certainly, different clustering methods are useful for different purposes. One should not blindly
apply every clustering algorithm without knowing which method is best for answering particular
kinds of questions. The analyst should start the discovery process with a hypothesis; this hypothesis
may not be limited to a particular gene or set of genes but should ask a specific question of the
data. At this point, it may be useful to list some potential questions one could start with:

What uncategorized genes have an expression pattern similar to these genes that are well
characterized?

• 

How different is the pattern of expression of gene X from other genes?• 
What genes closely share a pattern of expression with gene X?• 
What category of function might gene X belong to?• 
What are all the pairs of genes that closely share patterns of expression?• 
Are there subtypes of disease X discernible by tissue gene expression?• 
What tissue is this sample tissue closest to?• 
Which are the different patterns of gene expression?• 
Which genes have a pattern that may have been a result of the influence of gene X?• 
Which genes have a pattern that caused the expression pattern of gene X?• 
What are all the gene−gene interactions present among these tissue samples?• 
Which genes best differentiate these two group of tissues?• 
Which gene−gene interactions best differentiate these two groups of tissue samples?• 

As we shall see as we progress through this chapter, different algorithms are more particularly
suited to answer some of these hypotheses, compared with others.

4.4 Hierarchy of Bioinformatics Algorithms Available in
Functional Genomics

Although there are only a few commonly used analytic techniques in functional genomics, it is
important to remember that these techniques exist in a hierarchy of methods. One can model this
taxonomy of techniques many different ways, as outlined in section 2.2; in this section, we chose to
distinguish these methods as supervised or unsupervised [73]. An example of supervised learning is
simply calculating the fold increase or decrease in expression of each gene in two microarray
measurements. In this type of analysis, the particular context of each measurement is known, and
the end result is a list of individual genes behaving differently in each of the different contexts.
Another example of supervised learning is when it is algorithmically determined which genes are
best able to determine an external labeling,[1] such as distinguishing one type of leukemia from
another [78]. This type of approach is used in neural network construction [155], and decision tree
construction [146], which can then be easily translated into diagnostic algorithms [33,98].

In unsupervised learning, the patterns inherent in the data itself are determined, without a priori
labels or contexts. Relevance networks, dendrograms, and self−organizing maps analyze every
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possible pair of genes to determine whether a functional relationship exists between them. This is
determined using a metric, such as Euclidean distance between the genes (when genes are
positioned in a multidimensional space with each experiment as a separate axis), Pearson's
correlation coefficient (assumes a linear model of control between the two genes), or mutual
information (with no assumptions as to the model of control). The end result of this analysis is a
ranked list of hypotheses of pairs of genes that work together. A taxonomy of techniques divided in
this manner would look like this:

Unsupervised: Analysis looking for characterization of the components of the data set,
without a priori input on cases or genes.

Feature determination: Determine genes with interesting properties, without
specifically looking for a particular pattern determined a priori.

Principal components analysis: Determine genes explaining the majority of
the variance in the data set.

i. 

a. 

Cluster determination: Determine groups of genes or samples with similar patterns
of gene expression.

Nearest neighbor clustering: The number of clusters is decided first, the
clusters are calculated, then each gene is assigned to a single cluster.

Self−organizing maps: Groups are found by iteratively moving each
cluster centroid toward a randomly chosen data point; the center of
each cluster is a hypothetical gene expression pattern.

A. 

K−means clustering: Similar to self−organizing maps, except there is
no map structure for the centroids.

B. 

i. 

Agglomerative clustering: Bottom up method, where clusters start as empty,
then genes are successively added to the existing clusters.

D e n d r o g r a m s :  G r o u p s  a r e  d e f i n e d  a s  s u b − t r e e s  i n  a
phylogenetic−type tree created by a comprehensive pairwise
dissimilarity measure, such as the correlation coefficient.

A. 

Two−dimensional dendrograms: Both genes and samples are
clustered separately.

B. 

ii. 

Divisive or partitional clustering: Top−down method, where large clusters are
successively broken into smaller ones, until each subcluster contains only
one gene.

Dendrograms.A. 
Two−dimensional dendrograms.B. 

iii. 

b. 

Network determination: Determine graphs representing gene−gene or gene
phenotype interactions.

Boolean networks: Gene expression measurements are binarized; nodes in
the graph represent an entire expression state, and links represent transitions
from one expression state to another.

i. 

Bayesian networks: Nodes in the graph represent features (genes or
phenotypic measures), and l inks between features are determined
probabilistically.

ii. 

Relevance networks: Nodes in the graph represent features (genes or
phenotypic measures); links between features are calculated with pairwise

iii. 

c. 

1. 
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application of a dissimilarity measurement, and networks represent
agglomerations of these pairwise associations.

Supervised: Analysis to determine ways to accurately split into or predict groups of samples
or diseases.

Single feature or sample determination: Find genes or samples that match a
particular a priori pattern

Nearest neighbor: Find genes or samples closest to another pattern, using a
dissimilarity measure, such as Euclidean distance or the correlation
coefficient.

Comparison to hypothetical pattern: Find genes or samples closest in
similari ty to a hypothetical pattern, determined with  a priori
information.

A. 

Comparison to actual pattern: Find genes or samples closest in
similarity to one of the genes or samples in the data set.

B. 

Comparison to clusters: First, remember the training set of data and
labels; then, when presented with a test gene or sample, find the
element of the training set that is closest and use its label.

C. 

i. 

Student's t−test: Find genes where the expression measurements are
statistically different between groups of samples

ii. 

a. 

Multiple−feature determination: Find combinations of genes (i.e., more than one)
that match a particular a priori pattern.

Decision trees: Use the training set of genes or samples to construct a
decision tree to help classify test samples or test genes.

i. 

Support vector machines: First take the set of measured genes, then create a
richer feature set with combinations of genes, then find a hyperplane that
linearly separates groups of samples in this larger multidimensional space.

ii. 

b. 

2. 

The hierarchy above is meant to serve as a way to categorize bioinformatics techniques, and the
examples under each branch of this hierarchy are incomplete; newer methodologies in each branch
are shown in section 4.10.

This hierarchy just touches upon one of the important goals of the bioinformatics arm of functional
genomics. That is, to ascertain gene regulatory networks from gene expression data sets. Few of
the algorithms listed above find their way into this endeavor for reasons that we address here.

One crude definition of a regulatory network is a set of genes G and a set of relations R that relates
any two elements from G. The relation may specify either a positive or a negative interaction. For
example (A, B, +) may indicate gene A interacts with gene B in a positive manner, such that the
level of expression of gene B increases as the level of expression of gene A increases. Completely
missing are alternative models other than these simple linear models of gene−gene interactions.
Any element of translation into protein, the actual actions of proteins in DNA binding, any sense of
temporality, and gene and protein degradation are missing. However, despite all that is missing,
there is enough captured in this simple model to provide material to construct a biological
hypothesis linking the two genes. [177]

In the above hierarchy, we do not consider a dendrogram to be a member of the network
determination category of algorithms. Why is this? One typically constructs dendrograms from a
gene expression data set to survey the types of expression patterns, and to determine the
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neighbors of genes to be classified. Although dendrograms are computed from a comprehensive
pairwise calculation of gene−gene expression pattern similarity, as detailed below, these
gene−gene links are not shown in the output. Besides the first gene−gene pair, each subsequent
gene is added to the dendrogram when its expression pattern matches an expression pattern of a
branch. These branch expression patterns represent the average expression pattern of the
descendant genes, and may not match any one of these genes. Furthermore, gene−gene
interactions with negative correlations are not represented in dendrograms, thereby eliminating a
large class of biological regulatory behavior.

In the same vein, why do we not consider a self−organizing map as part of the network
determination category of algorithms? Self−organizing maps are typically made to survey the types
of expression patterns seen in a gene expression data set. Like dendrograms, self−organizing maps
do not display gene−gene interactions; instead, these typically output a centroid expression pattern
(essentially, an average expression pattern not matching anyone of the genes in the data set) and
output the expression patterns of the genes surrounding the centroid. There is no representation of
a gene−gene interaction, nor are negative interactions considered.

[1]For example, human expert−derived labels.

4.5 Data Reduction and Filtering

Clustering algorithms can easily be biased if certain assumptions they hold are not met. Each
dissimilarity measure has its own set of assumptions and requirements. For example, the reliability
of the correlation coefficient not only assumes that two data sets are normally distributed but that
they are easily biased by outlying points (see figure 4.1). Another example is that genes with
expression measurements that are constant across samples may still show variation due to
measurement noise, and if these genes are not filtered out, such measurement noise can be
amplified by normalization and can appear as a true signal. Four common methods for filtering
genes meeting these degenerate cases are given here.

Figure 4.1: Example of how a single point can distort overall correlation. On the left: the scatterplot
shows a negative correlation. The scatterplot on the right is identical, save for the additional point
added. If the values of even a single point are high enough, the correlation coefficient can be altered
(though the variance of the correlation coefficient, if calculated, would be higher). This is primarily
because using the correlation coefficient assumes values distributed normally.
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4.5.1 Variation filter

One way to prevent degenerate clustering is to remove genes or samples that are changing "too
little." A variation filter is used to ensure that genes or samples have a wide enough dynamic range
of measurements. Dynamism can be measured in both absolute and relative terms. For example, a
gene could be removed from further analysis if there is less than a two fold difference in the
measurements across the samples (a relative term) or if there is less than 35 expression units of
difference in the measurements across the samples (an absolute term).

make a new empty list called post_filter
loop through each gene G to be filtered
     find the minimum expression level for G
     find the maximum expression level for G
     set the flag keep_gene to false
     if maximum − minimum is over 35
          set keep_gene to true
     if maximum / minimum is over 2
          set keep_gene to true
     if the flag keep_gene is true
          add this gene G to the post_filter list
end loop

There are those investigators who will object to this kind of filter because there may well be
biologically important changes in expression that are very small and will be removed by this
variation filter. However, if functional genomics experiments are seen as a funnel (see figure 1.6) for
determining which are the high−yield hypotheses to pursue for biological testing, then the high
false−positive rate of genes hypothesized wrongly to be biologically relevant may prove to be costly
(see figure 2.9 in section 2.1.4).

4.5.2 Low entropy filter

The opposite problem can also occur with gene expression patterns. Genes can demonstrate
spiking behavior, where low expression levels are seen in all samples except one. The single high
expression can dominate a pairwise analysis using correlation coefficients, for example (see figure
4.1 for an example) [94].

An entropy filter can be used to remove genes that demonstrate spiking behavior, or, in other
words, that are not well distributed over its range of values. Entropy is a measure of the amount of
disorder in a variable. If measurements of a variable are equally distributed across its dynamic
range, then very little information is known about the expected value for the variable. Once the
measurement is known, the amount of information about the variable increases greatly, meaning
such a variable has high entropy. Compare this to a variable that can be measured at only two
values. A great deal of a priori information is already known about the expected value for this
variable; thus, once the measurement is actually known, the amount of information increase is less.
This indicates the variable has lower entropy(see figure 4.2).
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Figure 4.2: Detecting spikes by calculating entropy. The top graph shows a hypothetical gene with
"spiking" behavior; i.e., the gene expression is markedly higher in two samples, compared to the
other samples. The bottom graph shows a second hypothetical gene with gene expression
measurements that are more distributed across the dynamic range. Distribution of the gene
expression measurements are not just a characteristic of the gene; it is also connected to the
samples in which expression was measured.
where x is the variable whose entropy H is being calculated, log2 is base 2 logarithm, and p(xi) is the
probability a value[2] of x was within quantile i of that feature. For example, if one were using 10
quantiles, and a gene with the expression amounts 20, 22, 60, 80 and 90 would have deciles 7 units
wide, with twovalues in the first decile, one in the sixth decile, and one in the ninth and tenth decile,
making H = ‘.92. This pseudocode accomplishes the same.
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define number_bins as the number of bins to use in entropy
     calculations
make a new empty list called post_filter
loop through each gene G to be filtered
     find the minimum expression level for G
     find the maximum expression level for G
     set expression_range to maximum − minimum
     set interval to expression_range divided by the number_bins
     make a new empty array called deciles, with size = number_bins
     set deciles[1] to interval
     loop through the rest of deciles[2..number_bins] using the
          index i
          set deciles[i] to deciles[i−1] plus interval
     end loop
     make a new empty array called decile_count, with
          size = number_bins
     loop through all the expression measurements for G
          set the flag bin_found to false
          loop through deciles[1..number_bins] using the index i
               if the expression measurement is <=
                    deciles[i] and not bin_found
               add one to decile_count[i]
               set the flag bin_found to true
          end loop
     end loop
     set entropy to zero
     loop through decile_count[1..number_bins] using the index i
          if decile_count[i] is over zero
               set probability_in_bin to decile_count[i] divided by
                    the number of expression measurements in G
               add to entropy (probability_in_bin times
                    log−base−2( probability_in_bin ) )
          end if
     end loop
     set entropy to −1 times entropy
end loop

After entropy is calculated for each gene or sample, a threshold low entropy (e.g., at the lower 5th
percentile) can be chosen and used to filter out genes that do not display a suffcient range of
values. In using this technique, however, one needs to note that the calculation of entropy does
directly depend on the number of quantiles used, and the use of 10 deciles is arbitrary.

As an alternative method, Heyer et al. [94] proposed the use of the jackknife correlation coefficient
to counter the spiking problem. The jackknife correlation coefficient is an alternative dissimilarity
measure to the standard (Pearson's) correlation coefficient. To compute this measure for two genes
measured in n samples, the technique involves computing n different correlation coefficients, each
time with one of the samples removed. The jackknife correlation coefficient is then the minimum of
the separate correlation coefficients. Use of this dissimilarity measure will effectively remove single
outliers. However, it is not clear whether removing a single outlier is enough, especially when
samples from many disparate tissues are used, and several spikes are seen. It is also questionable
whether removing spikes is even desirable, because when two genes demonstrate spiking behavior
in the same samples, it may reflect something biologically interesting.

It is important to note that both variation filters and low entropy filters remove entire genes from
downstream analysis. If the subsequent analysis is being used for hypothesis generation, this
means that hypotheses containing the filtered genes will not be created or considered. Yet again,
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the cost−benefit analysis of section 2.1.4 should be considered.

4.5.3 Minimum expression level filter

As described elsewhere in this book, it is commonly believed that low gene expression
measurements are less reliable than high gene expression measurements. Empirically, this means
one's confidence interval around a measurement differs as a function of the expression level. If the
low expression levels are particularly noisy, this can cause artifacts in the downstream clustering
process, or worse, cause the creation of incorrect clusters. One solution to this is to ignore those
gene expression measurements with a measurement under a threshold value. Threshold minimum
expression values can be calculated arbitrarily at a percentile of the distribution of expression
measurements (e.g., at the lower 5th percentile), determined empirically at an ideal point for
clustering sensitivity and specificity [40]. Here, we show pseudocode that removes genes using the
first of these three methods.

loop through each gene G to be filtered
     find the minimum expression level for G
     find the maximum expression level for G
     set expression_range to maximum − minimum
     set lowest_5th_percentile to expression_range times 0.05
     loop through all the expression measurements for G
       if the expression measurement is under lowest_5th_percentile
          remove that measurement from G
     end loop
end loop

Note that with this type of filter, we are removing gene expression measurements, not entire genes,
from the downstream analysis. For example, when genes A and B are compared using a
dissimilarity measure, each sample normally has two measurements associated with it: the
expression level of gene A in that sample, and the expression level of gene B in that sample. By
removing gene expression measurements using a minimum expression level filter, we are removing
one or both of those gene expression measurements from the sample. Thus, when genes A and B
are compared using the dissimilarity measure, there will be fewer samples used in calculating the
measure.

4.5.4 Target ambiguity filter

Another seemingly straightforward filter has not been used as commonly. Given the accelerating
rate of new annotations in DNA databases, it is not uncommon that a probe or probe set used on an
older microarray is no longer specific for a single gene. This can happen if the probe was either
designed without knowledge of the entire genome or designed against a piece of chromosome
instead of an expressed sequence. As an example, probes made against GenBank accession
AF053356 might represent the expression of any of 12 expressed products, since this sequence in
GenBank represents a piece of chromosome 7. At the time of the microarray construction, however,
this region may have been thought to represent only a single gene.

Since without knowledge of the exact probe sequences it is not clear what an expression
measurement on a probe set made from a piece of chromosome means, one can argue for removal
of these types of probe sets from analysis at the start. However, this requires the use of probe
databases early in the analysis, which is not easily performed.
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[2]An expression value if the variable whose entropy is being calculated is a measure of gene
expression, but any kind of variable, even a noncontinuous or categorical variable such as eye
color, can be used in an entropy calculation.

4.6 Self−Organizing Maps

The use of self−organizing maps (SOM) in functional genomics was first described by Tamayo et al.
[175]. The underlying hypothesis in this technique is the standard functional genomics dogma
articulated in section 2.2: genes with similar expression patterns are functionally similar. Thus, if one
can find groups of genes that are all near each other, such a group is likely to be related
functionally.

As typically used, this methodology starts by rescaling each gene into a standard distribution, e.g.,
with mean = 0 and variance = 1, though this is not required. Each measured gene is mapped into a
k−dimensional point, such that each of the k dimensions corresponds to a different tissue sample or
microarray. The ith coordinate axis represents the ith sample. Each gene is evaluated by its vector
of measurements[3] and is represented by a point in the map. Coordinates for these points therefore
represent the expression levels in various experiments. This is easy to visualize for a gene
measured in three experiments (see figure 4.3). The multidimensional space would be represented
as a hypercube. Each side of the cube represents a different tissue sample or microarray. Each
gene would be a multidimensional point within the cube space, with each coordinate equal to its
measurement.
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Figure 4.3: Genes can be represented as points in a multidimensional space. Each sphere
represents a gene measured in three tissue samples. Each of the expression levels is considered
as a measure along a three−dimensional coordinate. One can imagine that genes with similar
expression levels in all three samples may be grouped as clusters in the three−dimensional space.
These clusters can be found using an unsupervised technique, such as self−organizing maps.
The analysis starts by choosing a map or topology of nodes N (called centroids), typically arranged
in a grid.[4] Each node is in the same dimensional space as the genes, or objects being clustered.
Each centroid starts at a random position in the k−dimensional space as follows:
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define number_centroids as the number of centroids we will start with
define number_axes as the number of samples or experiments for which
     we have data
define vector as an array of floating point numbers,
     with size = number_axes
make a new empty array of vectors called centroids,
     with size = number_centroids
loop through centroids using the index i
     loop from 1 to number_axes, using index j
          find the minimum expression level across all the
               genes measured in sample j
          find the maximum expression level across all the
               genes measured in sample j
          set coordinate j for centroid i to be a random number
               between the minimum and maximum
     end loop
end loop

The centroids are subsequently mapped to a position in this k−dimensional space and correspond
to the center of a cluster. The mapping process is iterative, meaning that the map is formed over
several cycles. During each cycle, a random data point is chosen and all of the centroids are moved
toward that point, as illustrated in figure 4.4. The distance each centroid is moved is typically a
function of both the iteration number and the distance between the point and centroid, such that the
distance moved decreases as more iterations have passed. The distance moved is also less for
those centroids farther away from the randomly chosen point.

define number_centroids as the number of centroids we will start with
define number_genes as the number of genes we are working with
set continue_loop to true
set iteration to zero
loop while continue_loop
     set cumulative_moving to a zero vector
     calculate learning_rate, as a function of iteration
     pick a random gene G from the list of all genes we have
     loop through centroids using the index c
          calculate dissimilarity measure (i.e. distance) from
               centroid to G
          calculate vector v by taking centroid c and subtracting G
          move centroid c along vector v as a function of
               learning_rate
          add the amount moved to cumulative_moving
     end loop
     add one to iteration
     set average_moved to cumulative_moving divided by
          number_centroids
     if average_moved is under a predetermined threshold
          set continue_loop to false
     end if
end loop
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Figure 4.4: Principle of self−organized maps. Centroids start in an arbitrary topology; then, as the
method progresses, each moves toward a randomly chosen gene during each iteration. After
proceeding for enough time, each centroid will be in the middle of a cluster. (From Tamayo et al.
[175].)
The algorithm continues until either fixed endpoints are reached, or after there is no movement of
nodes above a threshold.

As most commonly used, self−organizing maps employ Euclidean distance as the dissimilarity
measure. However, there is nothing that would prevent the use of the correlation coefficient or
mutual information as the dissimilarity measure instead. Nonetheless, we describe this algorithm
using the Euclidean distance because that is the way it is typically presented in the most
well−known applications in functional genomics [78].

Figure 4.5 explains the conventional graphical representation of self−organizing maps.
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Figure 4.5: Graphical convention for self−organizing maps. (Derived from Tamayo et al. [175].)
4.6.1 K−means clustering

The k−means clustering algorithm is very similar to the self−organizing map methodology. Centroids
are initialized to randomly chosen genes, then each gene is mapped to its closest centroid. In an
iterative manner, the centroids are then updated with the average expression pattern of the genes
assigned to that cluster; then the genes are again mapped to their closest centroid. This continues
until all genes remain mapped to the same centroids.

Published examples

Tamayo et al. [175] used self−organizing maps to functionally cluster genes into various
patterned time courses in HL−60 cell macrophage differentiation.

• 

Toronen et al. [180] used a hierarchical self−organizing map to cluster yeast genes
responsible for diauxic shift.

• 

Soukas et al. [165] used a k−means approach to cluster genes involved in leptin signaling.• 
Tavazoie et al. [176] used k−means to determine clusters of genes based on function, for
which 52 upstream regions in the genome were searched in an effort to find common
regulatory sequences.

• 
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Advantages

Easy visualization in two dimensions of the range of variation seen in the data: Since the
map will be spread across the multidimensional space of experiments, by displaying the
expression patterns represented at each node, one can quickly see the variety of gene
expression patterns. For example, if there was not much variety in the gene expression
patterns, one would quickly find the representative gene expression patterns from the many
nodes of the self−organizing map appearing the same.

• 

Computational requirements: Since only the centroids are moving in each iteration, the
number of distances to be computed is linear with respect to the number of nodes. After the
map is made, gene assignment to a cluster may require the computation of distances from
each gene to each centroid. On the face of things, this is still much less computationally
expensive than the initial precomputation of comprehensive pairwise dissimilarity measures
required by the other techniques, suchas dendrograms and relevance networks. However,
this gain in performance is tempered by the large (but finite) number of iterations that may
be required to reach stability.

• 

Disadvantages

Arbitrary map topology: There is nothing to indicate exactly how to create the initial map
geometry. The k−means algorithm requires the number of nodes to be specified as a priori
information. The self−organizing map technique also requires the initial geometry of the
nodes to be specified.

• 

Misses negative correlations: Negative correlations include gene interactions such as those
demonstrated by tumor suppressor genes. As an example, p53 suppresses the expression
of several other genes. This means that the higher the expression of p53 seen, the less
expression of other genes is expected. Negative correlations will be missed in this type of
approach.

• 

Inuenced by spiking in gene expression: Without adequate filtering, spiking (isolated high or
low expression in single samples) can prevent proper normalization, which impairs
self−organizing map formation.

• 

Each experiment or coordinate is treated independently and with the same weight: each axis
is treated as orthogonal to the others. This may not be the actual case, however. Consider
the extreme example of a situation where two replicated measurements are made on three
patients, making six microarray measurements. In eachof the three patients, the pair of
replicated measurements should not differ. However, if each of the six measurements is
treated as a separate, orthogonal axis, too much weight may be given to the replicates,
which may have measurements close together. In other words, genes may appear closer
simply because they have many similar measurements across the replicated experiments.

• 

Further analysis is needed to determine the actual boundaries of each cluster: After the map
is made, all the genes in the multidimensional space may be assigned to a cluster by
choosing the centroid closest to each gene. However, it is not immediately clear where the
boundaries of each cluster lie. First, this is important in determining which genes lie within
the cluster. Second, this is crucial because it is important to distinguish those genes that are
far away from all centroids. If too many genes are too distant from all the clusters, it can be
an indication that additional centroids need to be added at the at the start of analysis to gain
coverage in that area of the multidimensional space. Thus, it is important to determine what
the shape and size of the clusters are, but this requires prior assumptions (the space of the
centroids can be round or oval, the diameter can be large or small, or equal among all the
clusters, etc.) for which there may be little domain or expert knowledge.

• 

Membership of a gene may be limited to a single cluster: If a gene resembles the centroid
pattern seen in two clusters, it may be assigned to one of the two clusters but not both,

• 
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unless precautions are taken to scan for this situation.
Missing data: If a single gene expression measurement is missing, it becomes difficult to
determine where to place that gene in the multidimensional space. This positioning may be
crucial to determining which centroid is closest to that gene.

• 

Stochastic technique: Since the initial conditions are determined randomly, the results may
not be repeatable. Validation techniques can be performed by repeating the algorithm using
several random starting positions, but it is not clear how to merge the resulting, differing
maps.

• 

[3]Each measurement of that gene in each experiment corresponds to one element of that vector.
[4]Note that this topology is selected by the investigator sometimes on the basis of prior knowledge
(the number of expected natural clusters of the data) and sometimes empirically by iterating across
several possible topologies and inspecting the results.

4.7 Finding Genes That Split Sets

As suggested by the machine−learning taxonomy above (section 4.4), nearest neighbor analysis
has been used in both supervised and unsupervised learning methods. In a supervised application,
the technique is traditionally used to find genes that match an externally specified pattern. These
patterns may be "ground truths" in independently validated biological knowledge (e.g., a gene
known to be involved in the process being studied) or empirical (e.g., a gene that is observed to be
highly expressed in certain samples and expressed at a lower level in other samples). In an
unsupervised manner, the technique is used to find clusters of genes that share similar expression
patterns.

Let us start with the supervised method. We may have a specified gene of interest in our data sets.
Alternatively, we may specify a desired or hypothetical gene expression pattern which may not exist
in the data set. Such a pattern could be made based on the desired properties of a gene in
particular samples or patients. For example, one may want to find a gene that was upregulated in
patients with disease and downregulated in nondiseased patients.

To get a list of genes related to either query pattern, we must again define what it means to have
similar patterns. Although any dissimilarity measure can be used as the judge of whether
expression patterns are similar, Euclidean distance and the correlation coefficient have been used
traditionally. Iteration through the data set will quickly find and rank genes by the degree of similarity
to the query pattern.

define number_genes as the number of genes we are working with
define query_pattern Q as a vector across all the samples,
     representing the gene with the expression pattern we are most
     interested in
make a new empty array called distances, with size = number_genes
loop through all the genes, with index G
     calculate dissimilarity measure (i.e. distance) between Q to G
     store the measure in the appropriate position in distances
end loop

Published examples

Using a hypothetical pattern, Golub et al. [78] used this technique to find those genes that
best split samples of acute lymphocytic leukemia from acute myelogenous leukemia.

• 

Ben−Dor et al. [19] used a nearest neighbor classifier to split normal colon samples from• 
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cancer samples from [4], as well as other data sets.

Advantages

Computational and memory requirements: When used in a supervised manner, nearest
neighbor analysis is considered a "lazy classifier," in that the algorithm requires only that the
data set be kept in memory. The genes "nearest" to the search pattern are found when
required, minimizing unnecessary comparison operations. This is in contraste to other
techniques, which may require the initial expensive computation of pairwise dissimilarity
measures.

• 

Quickly finds genes or features that most significantly split the labeled sets. These can be
validated biologically,then developed into diagnostic tools, for example.

• 

Disadvantages

Only gross differences are found. In other words, genes with differences in absolute
expression level are typically chosen. Differences in gene−gene interactions may be missed
where the expression level of the genes involved in the interaction may not be different (see
figure 4.6).

Figure 4.6: Genes can have a difference in interaction, but not in expression level.
Scatterplot of gene A and gene B, measured in samples from disease 1 (open circles) and
disease 2 (closed circles). Note that expression measurements from neither gene A nor
gene B can be used to separate disease 1 from disease 2. However, the linear regression
model of gene expression levels from disease 2 is different from disease 1.

• 

The genes or features that best split two sets may not necessarily be the most significant or
biologically causative. For instance, the genes selected may be the most obvious but distant
"downstream" effects of other genes which are primarily responsible for the difference in
states.

• 

Because many more features (i.e., genes) are measured compared to cases (i.e., samples• 

130



or experiments), it is almost always possible to find genes that split samples into labeled
sets. If one considers combinations of genes as features (i.e., with support vector
machines), then one can find even more features that successfully split the sets. One has to
be careful to look for simple models that split sets, even if they are not as accurate [30].
Otherwise, these models may lose biological relevance.

4.8 Phylogenetic−Type Trees

A third methodology is phylogenetic−type[5] tree construction, otherwise known as dendrograms.
Although there are several ways to construct this data structure, this technique typically first
involves comprehensively comparing all genes against each other using a dissimilarity measure,
such as the correlation coefficient. Eisen et al. [63] took expression levels at various time points and
created a vector for each gene. They then compared all genes against each other and recorded the
correlation coefficient for each pair of vectors, then constructed a phylogenetic−type tree with
branch lengths proportional to the correlation coefficients.

Let us take this process one step at a time. First, enough memory must be allocated to store the
comprehensive pairwise comparisons. If n genes are being compared with each other, there are
((n*n)/2)�n/2 possible pairwise comparisons. Typically, when maximum efficiency is used,
dissimilarity measures are stored as real values taking 4 bytes each. Clearly, as n increases, the
necessary memory increases on the order of n2. Next, an iterative method must be used to perform
the pairwise comparisons. Since associativity holds with the correlation coefficient and Euclidean
distance, once gene A is compared with gene B, the reverse comparison does not need to be
performed. There are four logical ways to order these comparisons, as shown in figure 4.7, and one
needs to be chosen arbitrarily. Regardless of how we are calculating or storing the measures in this
chapter, we refer to the comprehensive set of measures for a collection of variables or features as a
measure−triangle.
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Figure 4.7: Four possible ways to order comprehensive pairwise comparisons. We define the term
measure−triangle as the comprehensive pairwise comparison between each of a set of features.
The comparisons can be performed and stored in any of four different ways.
Although there are many efficient ways to store the results of each comparison, e.g., using matrices,
we purposely use a less efficient, but easier−to−understand method here. We store the result of
each comparison in a hash table, using the two genes (sorted) as the key. That is, the dissimilarity
measure can be retrieved from the hash table using the unique pair of genes.

define number_genes as the number of genes we are working with
make a new empty two−dimensional array called measure−triangle,
     with size = number_genes by number_genes
loop from 2 to number_genes, with index i
     loop from 1 to i − 1, with index j
          calculate dissimilarity measure (i.e., correlation
               coefficient) between gene[i] and gene[j]
          store measure in measure−triangle[i][j]
     end loop
end loop

For each possible pair, the dissimilarity measure must be applied. Eisen et al. [63] essentially used
the correlation coefficient in pairwise comparisons. Wen et al. [189] used Euclidean distance as a
dissimilarity measure.
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In addition to the measure−triangle used to store the dissimilarity measures, we need a data
structure to hold the developing tree. A tree can be thought of as a set of internal nodes and
external nodes (or leaves). Internal nodes serve as branchpoints linking together genes or
subbranches. External nodes or leaves are exclusively genes. Because both genes and branches
can be connected by branches, we will make that fact explicit by stating that they both can be
branchable.

define number_genes as the number of genes
define number_samples as the number of samples
define an object called branchable, which contains
     (1) an array of expression measurements of size number_samples
     (2) a link called parent, to another object of type branchable
     (3) a list called children, to other objects of type branchable define

         an object called branch−branch,

         which is derived from branchable
define an object called branch−gene, which is derived from branchable
make a new empty list called remaining−branchable−objects
make a new empty list called used−branchable−objects
loop through all the genes, with index g
     make an object of type branch−gene for each gene
     set the list of children for this object to null
     set the parent for this object to null
     add this object to the list remaining−branchable−objects
end loop

We are ready to begin building the tree. Iterations continue until every node has been attached to
the tree. The tree begins with a single branch with two leaves, connecting the two genes with the
strongest connection (e.g., either the highest correlation coefficient or the shortest Euclidean
distance). We will store the branches

loop until the size of remaining−branchable−objects reaches zero
     find the strongest measure in measure−triangle
     determine the two branchable objects, called a and b,
          that were compared to make this measure
     make a new object of type branch−branch, called c
     add the branchable objects a and b as children of c
     set the parent of branchable objects a and b to c
     set the expression measurements of c to the
          average expression measurements of a and b
     remove objects a and b from remaining−branchable−objects, if
          they were in that list
     add objects a and b to used−branchable−objects
     remove all comparisons involving a and b in measure−triangle
     compare object c to all the objects in remaining−branchable
          −objects and add those measures to measure−triangle
     if size of remaining−branchable−objects is zero
          set main−tree−trunk to c
     end if
end loop

The two genes are removed from the measure−triangle, or specifically, all the measures involving
any one of these two genes are removed from the measure−triangle.[6] In place of the two genes, a
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new entity is created representing the branch with the two genes. The gene expression pattern for
this new branch is the average pattern of the two gene expression patterns being linked. Notably,
the new gene expression pattern for the branch does not have to be the average pattern. In
computing the distance between a gene and a branch, or a branch and a branch, one could use a
minimum, maximum, or average dissimilarity measure. New measures need to be calculated
comparing the branch against all the remaining genes, and these are stored back in the
measure−triangle. At every iteration, the next strongest measure is found and the process repeats,
removing two entities (genes or branches) and replacing them with a new one, until only one entity
remains.

At this point, the construction of the dendrogram is complete. However, the results still need to be
displayed. The constructed dendrogram is typically used to order and display genes with similar
clusters. At every branch, the display ordering can be one of two possibilities: Order one branch
before the other, or vice versa. This means for any tree with n branch points, there are 2n‘  possible
display orderings of the data. Other information needs to be used to determine a consistent way to
order the data. For example, position along a chromosome or average expression level can be used
to order genes. Since there are no loops present in dendrograms, we can use a depth−first search
to output the results. The following pseudocode will traverse the dendrogram and output the leaves
of the tree (i.e., the genes) in order by average expression level.

define a new procedure called print−tree, that takes a branchable
     object b as a parameter
if this branchable object b is a branch−gene (i.e., and not a
     branch−branch)
          print the name/label of b
end if
if the list of children of b is not empty
     move the left margin left 1 cm
     sort the list of children by expression level
     call procedure print−tree recursively on each child
          of b separately
     move the left margin back 1 cm
end if
end procedure

start the printing by calling print−tree on main−tree−trunk

The result is a dendrogram, typically drawn with the graphical conventions shown in figure 4.8.
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Figure 4.8: Graphical convention for dendrograms.
4.8.1 Two−dimensional dendrograms

Using the technique above, one creates a dendrogram and the position of the branches suggests
the presence of clusters. As mentioned above, the results still have to be displayed, and one can
use a secondary key to order the data, suchas average expression level, chromosomal position,
etc.

We have not yet answered how to order the data horizontally; i.e.,how should the experiments be
ordered, rather than the genes? For ordered experiments, such as time series data collection, gene
expression is typically shown from earliest to latest acquisition. However, when the samples have
no ordering, a second dendrogram is typically constructed to cluster the samples. This was the
approach used by Ross et al. [154] in clustering both various samples of cancer cell lines and the
genes measured by microarray, as shown in figure 4.9. The algorithm to construct such a
two−dimensional dendrogram is identical to constructing each of the dendrograms individually.
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Figure 4.9: Two−dimensional dendrogram. Dendrograms are constructed for both the genes and
samples individually, and are combined in the display. (Derived from Ross et al. [154].)
Published examples There are many examples of dendrograms applied to gene expression
measurements—too many to accurately list all of them. We will cite the earliest publications and the
ones most cited.

Spellman et al. [167] constructed dendrograms from a yeast expression data set constructed
under multiple conditions.

• 

Eisen et al. [63] described the application of dendrograms to multiple yeast expression data
sets, 1998.

• 

Alizadeh et al. [3] applied this technique to discover two subgroups within samples from the
single disease B−cell lymphoma, and showed a statistically significant difference in survival
curves of the patients from whom the samples were obtained.

• 

Ewing et al. [66] applied this technique after linking EST measurements with gene
expression measurements.

• 

Bittner et al. [26] classified genes measured in malignant melanoma.• 
Ross et al. [154] classified gene expression measurements from 60 cancer cell lines.• 

Advantages

Category number and size: One can estimate the number or size of different expression
patterns in the data set. For example, in viewing a self−organizing map, the user may not be
sure there was enough coverage of the multidimensional space.

• 

Quickly visualize overall pattern similarity: One can quickly see whether most of the genes or
samples in the data set are similar to or different from each other.

• 

Parallelizability: The most time−consuming aspect in the construction of dendrograms is the
initial comprehensive precomputation of the dissimilarity measure across the set of features.
This computation can be easily parallelized. The construction of the actual dendrogram
requires the serial creation of branches, and is not trivial to parallelize.

• 

Display requirements: Optimally displaying dendrograms requires only a narrow column, in
which gene names, symbols, and expression patterns (typically displayed in a color
representation) can fit.

• 

Disadvantages

Misses negative correlations: Negative correlations include gene interactions such as those
demonstrated by tumor suppressor genes. As an example, p53 suppresses the expression
of several other genes. This means that the higher the expression of p53 seen, the less
expression of other genes is expected. Negative correlations need to be explicitly searched

• 
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for.
Each gene is connected to the overall structure by only one link: the genes in a dendrogram
are stored as leaves of the tree. Clearly, each leaf can only be connected to the tree by one
stem. However, multiple links from a gene may be of interest. For example, one may wish to
distinguish between a transcription factor responsible for the regulation of 10 genes and a
structural protein whose gene is controlled by a single transcription factor. Dendrograms do
not allow for a variable number of links from each gene.

• 

All genes are clustered, regardless of connection strength: the algorithm continues until
every gene is connected. By definition, certain connections may be weaker than others. It
may be a disadvantage to see all genes connected, when particular links are much weaker
(i.e., perhaps less likely to be validated) than others.

• 

Single structure: Although a dendrogram is a single structure, intuitively one can use a fixed
distance from the root or a set of long branches to determine where to cut the branches in
order to delineate the subgroups. This may or may not have a statistical basis.

• 

Single metric type: Dendrograms can only be constructed using a single dissimilarity
measure. For example, it is not practical to construct a tree with genes connected by both
Euclidean distance and correlation coefficient. Only one dissimilarity measure may be used
at a time.

• 

Single data type: As stated at the start of this chapter, although we have many objects in
functional genomics that may be clustered, it is only practical to cluster one data type at a
time using dendrograms. For instance, genes may be clustered, and samples may be
clustered. If both need to be clustered, this is performed as a two−dimensional construct
using coupled two−way clustering [76]. Nonetheless, on occasion it does make sense to
cluster genes and phenotypic measures along the same axis. A "systolic blood pressure"
measurement might appear in one part of the dendrogram, while a "weight" may appear in a
different part. It would be difficult to determine which of the genes in the immediate
surrounding branches might be closest in profile to the phenotypic measure.

• 

It becomes difficult to follow the branching in a dendrogram, when the number of genes or
features is high [93].

• 

As each new branch is added to the forming tree, the average gene profile representing a
higher branch may not match any of the specific gene profiles within the subtree [162].

• 

These are not globally optimal trees: The algorithm described here falls under the category
of "greedy algorithms" in computer science, as the best match is always used at every step,
regardless of the later consequences it may have for forming the tree. Early "bad" decisions
in the formation of branches cannot be corrected later.

• 

Entire vector is used: This means that for each gene, the entire set of samples are used in
calculating the dissimilarity measurements. However, there may be very little variation in
most of the samples, and high variation in only a few of the samples. Two genes might be
scored as being similar, when they may actually differ greatly in one of the many samples.

• 

Computational requirements: This technique requires the comprehensive precomputation of
the dissimilarity measure for all pairs of genes, which grows on the order of n2 where n is the
number of genes being studied. This can be a time−consuming computation.

• 

[5]They do not describe the distance between the genomes of organisms as in standard
phylogenetic trees and therefore are referred to as "phylogenetic−type" trees.
[6]That is, all the elements of the hash table for which one of the two genes is a key.

4.9 Relevance Networks

Relevance networks offer a method for constructing networks of similarity, with the principal
advantages being the ability to (1) include features of more than one data type, (2) represent
multiple connections between features, and (3) capture negative as well as positive correlations.
Like dendrogram construction, this algorithm begins by evaluating the similarity of features by
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comprehensively comparing all features with each other in a pairwise manner over the same cases.
Several dissimilarity measures have been used in this methodology, including mutual information
and the correlation coefficient. In this section, we describe the construction of relevance networks
using . This is equivalent to r2, except the sign (positive or negative) from the r, or Pearson's
correlation coefficient, is applied. This is crucial in maintaining information about negative
correlations. After the measure−triangle is completed, a threshold measure is chosen. The entire
measure−triangle is scanned and any measures below the threshold are set to zero.

define threshold as the strongest link we are going to rule out
loop through all the measures in the measure−triangle
     if the measure is under threshold
          set the measure to zero in the measure−triangle
     else
          leave the measure alone
     end if
end loop

The measure−triangle must then be scanned to determine the networks. First, for the connections
that remained because of measures that were greater than the threshold, each of the two nodes
participating in the connection is listed as being used. An array stores the number of associations in
which each gene is participating.

make a new empty array called node−connections, with
     size = number_genes
loop through all the measures in the measure−triangle
     if the measure is at or over threshold
          find the two genes A and B that were compared to make
               this measure
          add one to gene A's entry in the array node−connections
          add one to gene B's entry in the array node−connections
     end if

end loop
set number−nodes_used to zero
loop through the entries in the array node−connections
     if the entry is greater than zero, increment number−nodes−used
end loop

Next, each of the networks needs to be found and assigned a number. This is done using a
combination linear−recursive methodology. A counter for the network number to be assigned is first
set to 1. The list of features is iterated on, until a feature is found that is used in the relevance
networks. That feature is assigned to the first relevance network. The algorithm then recursively
descends to each of the connected features, and assigns them the same network number. This
continues until all the features have either been assigned to a network, or have been eliminated.

define a new procedure called assign−network, that takes a
     current−gene−index and a current−network−number
set G to be the gene indexed by current−gene−index in the
     array all−genes
if G's entry in the array node−connections is greater than zero
     (i.e., that node is being used in a connection)
if G has not been assigned a network number
     assign it the current−network−number
else

138



     just in case we find a gene that was already
          assigned a number,
     if G's current network number is larger
          than current−network−number change G's
               network number to current−network−number
     end if
end if
if we have assigned or changed G's network number, we need to
     do the same to G's connected genes
loop through all of G's active connections, using the
     measure−triangle, using index H
     if gene H's network number does not equal G's network number
     call assign−network recursively on gene H
          using current−network−number
end if

end if
end procedure

set the current−network−number to 1
to start the assignment, loop through all the genes, using index G
     if G's entry in the array node−connections is greater than zero
          (i.e., that node is being used in a connection) and G has
          not been assigned a network number
     call assign−network on G using current−network−number
     increment current−network−number
end loop

Finally, the results need to be displayed graphically. There are several standard formats for graph
descriptions, and the specifics of these are beyond the scope of this book. We have successfully
used both the GMF format used by Tom Sawyer Software, Inc. (Oakland, CA) in their Graph Editor
Toolkit, as well as the DOT format used by AT&T Research Labs in their Graphviz package. For the
purposes of this chapter, we will demonstrate how one of these networks may look in DOT format,
primarily because software to format the graphs is freely available for academic use along with the
source code.[7] One can output this type of file by first looping through all the nodes and genes in
use and printing out their characteristics, then looping through and printing all the connections. A
sample output file in this format is shown here.

graph RN {
     size="7.5,10";
     ratio="auto";
     node [ fontname = "Helvetica", fontsize = 8 ];
     node001 [ shape=box, height=0.2, width=1.6, label="1318_at",
          style="setlinewidth(1.5)"];
     node002 [ shape=box, height=0.2, width=0.8, label="36262_at",
          style="setlinewidth(0.1)"];
     node003 [ shape=box, height=0.2, width=0.8, label="422_s_at",
          style="setlinewidth(3.0)"];
     node001 −− node002 [weight=1,style="setlinewidth(0.1)"];
     node001 −− node003 [weight=1,style="setlinewidth(3)"];
}

After installing the Graphviz package, this sample graph can be stored in a file called "test.dot."
Executing the following commands on a standard Linux computer will first translate the test.dot into
a PostScript file called test.ps, which can then be processed to make an Adobe Acrobat PDF file
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called test.pdf.

dot −Tps −o test.ps test.dot
ps2pdf test.ps

The output PDF file from this example will contain three nodes connected with two lines.
Alternatively, a commercial software package can be used to lay out more sophisticated graphs,
such as the Graph Layout Toolkit. Using this package, we have constructed relevance networks
such as those in figure 4.10.

Figure 4.10: Sample relevance network. One of 78 networks formed by aggregating mouse samples
from six different experiments. Threshold  was set to .99, meaning that the "thinnest" line seen
represented an  of .99. The legend for this type of diagram is shown in figure 4.11. The
hypothesis generated here is that RBBP4 expression correlates with GNS and MAX gene
expression. The miniature histograms for each gene show no "spiking" in the expression
measurements (see section 4.5.2). Each of these genes appears at a different chromosomal
location. By including information from LocusLink (see section 5.5.1) and Gene Ontology (see
section 5.1.1), we see that RBBP4 is known to control cell proliferation, and MAX is involved in
oncogenesis.
Typically, several graphical conventions are used to highlight the findings in relevance networks, as
shown in the figure 4.11. Since each line represents a strong connection or putative association, the
thickness of each line is proportional to the strength of the dissimilarity measure, so thicker
connections are stronger (and thus easier to find on the diagram). The width of each box
representing a feature is proportional to the number of features to which it is connected, and the
edge thickness of each box is proportional to the average strength of all the connections entering
that box. The length of the connection lines is not significant, and is left variable so that the graph
layout algorithms can more easily place the networks in a visually appealing manner (e.g.,
minimizing edge crossings).
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Figure 4.11: Graphical convention for relevance networks. To optimize the hypothesis generation
process, relevance network display software contains ties from microarray accession number to
GenBank, UniGene, LocusLink, Gene Ontology, and other databases (see section 5.5 for details of
this process).
A question immediately arises: Where does one set the threshold? One way to approach this
question is to plot the distribution of dissimilarity measure scores, then recompute the scores using
repeatedly randomly permuted data sets (see section 4.12.1). For instance, if one randomly
permutes the data set 100 times and finds the highest dissimilarity measure score is x, then one
could set the threshold to be greater than or equal to x. This approach is shown in figure 4.15.
However, an important point to raise is that the threshold does not have to be a fixed measurement,
but instead can be "dialed" up and down. In other words, one can set the threshold to be arbitrarily
high to start with and the resulting relevance networks can be viewed. If the associations are strong
but are already known and no longer worthy of pursuit, the threshold can be "dialed down" slightly
until new genes and connections are added, creating potentially novel hypotheses. Of course, one
must be careful not to drop the threshold so low as to allow potentially noisy and inaccurate
associations. The permutation testing can help with this.

Published examples

Butte and Kohane described the methodology and first applied it to clinical laboratory data
(i.e., phenotypic measurements) in [37], then applied it to yeast expression measurements
using mutual information as a dissimilarity measure in [38].

• 

Butte et al. [39] linked expression measurements in cancer cell lines to phenotypic
measurements on those cell lines (i.e., susceptibility to pharmaceutical treatment).

• 

Reis et al. [150] showed how dynamics (i.e., the slope or change in expression levels over a
time series) could be used as a dissimilarity measure in creating relevance networks.

• 

Klus et al. [110] constructed relevance networks from a breast cancer expression data set
and linked the results to chromosomal position.

• 

Advantages

Captures negative correlations: Relevance networks can simultaneously display both
positive and negative correlations. Negative correlations are seen commonly in biology,
where greater expression of one gene (e.g., a tumor suppressor gene) is associated with
decreased expression of other genes.

• 

Genes can be connected in more than one way (genes can be connected to more than one
other gene). This gives rise to three advantages: First, in biology, certain genes (e.g.,
transcription factors) are responsible for the expression of several other genes. This type of

• 
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multiple connection can be modeled using relevance networks. Second, certain features
may display weak similarity to two different groups of features, and using relevance
networks, these features can be seen to bridge the two groups. For example, certain
anticancer drugs can perform as both topoisomerase I and topoisomerase II inhibitors, and
the bridging action of these drugs between the two classes can be modeled using relevance
networks.
Multiple structures created: Certainly in biology, some gene regulatory networks are larger or
smaller than others, and this variation in size can be modeled using this technique.

• 

Multiple measures allowable simultaneously: In theory, a relevance network could be drawn
with the highest associations from multiple dissimilarity measures. For example, two genes
could be linked by , while another two genes could be linked by mutual information.

• 

Multiple data types allowable simultaneously: As shown in [39], gene expression
measurements can be combined with phenotypic measurements in the same data set and
the resultant hypotheses easily viewed. For example, a "systolic blood pressure"
measurement may appear linked to the specific genes whose expression measurement
correlate with that measurement.

• 

Parallelizability: The most time−consuming aspect of the construction of relevance networks
is the initial comprehensive precomputation of the dissimilarity measure across the set of
features. This computation can be parallelized.

• 

Disadvantages

Excessive complexity at lower thresholds: Although it is tempting to drop the thresholds to
reach a potentially novel hypothesis, empirically the number of links between the nodes
already present in the graph quickly grows to an unmanageable number. Depending on the
graph layout software used, these typically end up looking like large circular networks with
hundreds of connections between them, such as figure 4.12. In these cases, it is
advantageous that dendrograms have each gene attached to the overall structure by only a
single link. One can display relevance networks in a similar manner by taking each network
separately and calculating the minimum spanning tree by iterating through all the links from
weakest to strongest and deleting those links that do not cause the removal of a node in the
network. Fundamentally, however, relevance networks are most useful for identifying the
subgroup interactions that are linked the strongest.

• 
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Figure 4.12: Relevance network laid out as a circle. Relevance networks with too many
genes may be rendered in circles that minimize overlapping nodes and edge crossings.
However, these may be impossible to visualize.
Obscures large−scale partitional structure. Because all links that are subthreshold are
discarded, some large−scale functional groupings will not be detected.

• 

Larger cliques cannot be found efficiently: Those portions of the relevance networks that are
completely connected (i.e., all the nodes in the graph subset are fully connected to each
other) are known as cliques in graph theory, and are significant in that they represent the
most "believable" part of the relevance networks. In effect, if gene A and gene B are in a
clique together, it means that not only is there a strong direct association between gene A
and gene B but there are also indirect associations, where gene A and gene B both are
associated with gene C. These cliques are useful structures, but finding them in an
automated manner is an "NP−hard" problem (i.e., the size of the graph quickly overwhelms
the ability of any processor to find them using brute force).[8]

• 

Entire vector is used: Like other analytic methods, this means that for each gene, the entire
set of samples are used in calculating the dissimilarity measurements. However, there may
be very little variation in most of the samples, and great variation in only a few of the
samples. Two genes might be scored as being similar, when they may actually differ greatly
in one of the many samples.

• 

This is not a globally optimal network: Early bad decisions cannot be corrected later as the
threshold drops. Like dendrograms, relevance networks fall under the category of "greedy
algorithms" in computer science, as the strongest links are always used at every step,
regardless of the later consequences this may have for forming the networks.

• 
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Computational requirements: This technique requires the comprehensive precomputation of
the dissimilarity measure for all pairs of genes, which grows on the order of n2,where n is the
number of genes being studied. This can be a time−consuming computation. However,
compared to dendrogram formation, after the precomputation, no further dissimilarity
measures need to be computed, and thus with proper programming, the network formation
can be performed without much memory.

• 

Ternary and higher comparisons: As described here, this technique performs pairwise
comparisons. However, there are several examples in biology where a combination of
events is required for downstream action to take place. For example, several transcription
factors may need to combine to form a larger complex before transcription is initiated.
Performing pairwise comparisons is an expensive operation; performing three−way,
four−way and higher comparisons comprehensively quickly becomes intractable.

• 

Display requirements: Optimally displaying relevance networks requires a large
two−dimensional area (compared to a smaller columnar area for dendrograms) and requires
the use of sophisticated graph layout algorithms for optimal node placement. (See figure
4.12 for an example of a particularly difficult network to visualize.)

• 

[7]http://www.research.att.com/sw/tools/graphviz/.
[8]See sections 1.4.1 and 5.2 for more thoughts on "NP−hard" problems.

4.10 Other Methods

Many other methods have also been used in functional genomics analysis. Only a short list is
included here, with references to published biomedical works incorporating each technique, and
using the hierarchy proposed at the start of this chapter:

Unsupervised.

Feature determination.

Principle component analysis and singular value decomposition [189, 95, 68,
149, 5].

i. 

a. 

Cluster determination.

Nearest neighbor clustering.i. 
Agglomerative clustering.

Fitch dendrogram algorithm [189].A. 
Self−organizing tree algorithm [92].B. 

ii. 

Divisive or partitional clustering.

Matrix incision tree [108].A. 
Two−way clustering binary tree [4].B. 
Coupled two−way clustering [76].C. 
Cluster affinity search technique: [20].D. 
Gene shaving [87].E. 

iii. 

b. 

Network determination.

differential equations [44].i. 
Bayesian networks [71].ii. 
Hybrid petri networks [128].iii. 
Dynamic bayesian networks [134].iv. 
Boolean regulatory networks [119, 197, 172, 1, 2].v. 

c. 

1. 
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Supervised.

Single feature or sample determination.

Naive bayes classifier [21, 46].i. 
Naive Bayes global relevance [133].ii. 

a. 

Multiple−feature determination.

Decision trees: Supervised and multiple−feature determination [59].i. 
Support vector machines [72, 33, 46].ii. 
Tree harvesting [86].iii. 

b. 

Boosting [19].c. 

2. 

4.11 Which Technique Should I Use?

Each of the techniques described above has its own set of advantages, disadvantages, and proper
uses. It is useful at this point to revisit our initial list of potential hypotheses and determine which
bioinformatics technique would be most helpful to apply in each case.

What uncategorized genes have an expression pattern similar to these genes that are well
characterized? One could iterate through the group of well−characterized genes and apply
the supervised nearest neighbor technique to find genes with similar patterns. Similarity in
this context could be defined using any of the established dissimilarity measures (starting
with the correlation coefficient and Euclidean distance).

• 

How different is the pattern of expression of gene X from other genes? Starting with all
possible gene−gene pairs, one can first comprehensively compute a dissimilarity measure
across all the pairs (e.g., measuring the Euclidean distance between all pairs of genes). This
set of measures will form a distribution, and very possibly a bell−shaped distribution. One
can then find where the dissimilarity measures for gene X are in this distribution. If, for
instance, the dissimilarity measures for gene X are in the top 5th percentile of the overall
distribution, it would suggest that gene X is more dissimilar than other genes are.

• 

What genes closely share a pattern of expression with gene X? One can use a supervised
nearest neighbor approach to find those genes with expression patterns most similar to gene
X.

• 

What category of function might gene X belong to? Here, one can create a dendrogram,
then find gene X in the dendrogram. As one progresses up the tree starting from gene X,
one finds those genes with expression patterns similar to gene X. Using a "guilt by
association" approach, if most of the neighbors of gene X belong to a particular functional
category, then one should hypothesize that gene X belongs to that category [63]. Obviously,
this approach is only useful when the functional categories are known for the majority of the
genes. An alternative, simpler approach than constructing a dendrogram is to compute the
nearest neighbors to gene X and ascertain what their functions are.

• 

What are all the pairs of genes that closely share patterns of expression? Although
constructing a dendrogram starts with the comprehensive pairwise computation of a
dissimilarity measure, these pairs are not clearly displayed in the results. Instead, one can
use relevance networks to find those pairs of genes that score highest with a dissimilarity
measure.

• 

Are there subtypes of disease X discernible by tissue gene expression? To answer this
question, one can easily construct a dendrogram across the samples, not across the genes.
For instance, depending on the mixture of samples collected, one might find that half of the
samples fall in one half of the dendrogram, and the other half of the samples fall in the other

• 
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half of the dendrogram. One can then proceed to determine if there are phenotypic
differences between these branches. This was most dramatically demonstrated by Alizadeh
et al. [3], where the two major branches in the gene expression dendrogram obtained were
found to correspond to patients with significantly different mortality (see figure 4.13). Of
course, if the sample mixture is not diverse enough, one might miss the true biological
subsets and might instead overfit normal variance or noise in the measurements. This is a
matter of experimental design addressed in chapter 2.

Figure 4.13: Subcategories of B−cell lymphoma determined by microarrays correspond
clinically to duration of survival. On the left is a dendrogram constructed across the samples
of B−cell lymphoma, using an unsupervised technique. The top branchess entially defines
an even split between the categories GC B−like DLBCL and Activated B−like DLBCL, but
this distinction was never before made clinically. On the right are Kaplan−Meier survival
curves of the patients from whom the samples were obtained. Patients whose cancer
matched the Activated B−like DLBCL gene expression profile had a significantly worse
prognosis. (From Alizadeh et al. [3].)
What tissue is this sample tissue closest to? One can create a dendrogram of the tissues
and determine where the unknown tissue lies. Alternatively, one can use a supervised
nearest neighbor approach to determine the "closest" pattern of gene expression.

• 

What are all the different patterns of gene expression seen? Although dendrograms can
provide a categorization and ordering of genes based on expression pattern, self−organizing
maps can easily categorize and summarize the expression patterns present. Further
analysis can be run on these clusters, including determining whether the genes fall in the
same functional category, or searching for common sequences in the 52 upstream region
from each gene.

• 

Which genes have a pattern that may have been a result of the influence of gene X?
Answering this question requires the proper biological experiment to be performed. Thus,
this question is often asked when gene X is being over− or under−expressed in a particular
sample. One can treat the controlled expression level of gene X as an environmental factor,
then, using a supervised nearest neighbor approach, one can find whether any of the genes
correlate with the controlled expression level. However, the controlled expression level may
not be quantifiable, but instead may be discrete (e.g., gene X is "absent" in a sample from a
knockout animal, but is "present" in a sample from a wild−type or normal animal). In this
case, one can create a hypothetical gene expression matching this information (e.g., high
expression levels in the one set of samples, low expression levels in the other set), then use
a supervised nearest neighbor approach to find genes with a similar pattern.

• 

What are all the gene−gene interactions present among these tissue samples? Relevance
networks provide a network of gene−gene interactions based on dissimilarity measures.

• 

Which genes best differentiate two known groups of tissues? Because the two groups of
tissues are known, this calls for a supervised approach. Classic methods can be used to
address this question, such as the Student's t−test. Alternatively, one can construct a
hypothetical gene expression pattern across the samples with the desired behavior (e.g.,
high expression levels in one tissue, low expression levels in the other tissue), then use a
supervised nearest neighbor approach to find genes with a similar pattern. [78] Newer
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approaches to answer this question involve the use of support vector machines [33, 49, 72].
It is important to note that simplifying or pruning the list of genes using a technique such as
principal components analysis does not give one the genes that best split two sets. A classic
example of this is in shown in figure 4.14.

Figure 4.14: Feature reduction with principal components analysis. Two genes are
measured in eight samples, four from one disease (marked by X) and four from another
disease (marked by O). The expression measurements of gene A are represented on the
x−axis and the expression measurement of gene B are represented on the y−axis. Note that
the first principal component (i.e., the vector that captures the most variance) is parallel to
the x−axis, which corresponds to gene A. However, the line that best splits the two diseases
is described by its orthogonal vector along the y−axis, which corresponds to gene B. This
means that although the variance seen in gene A best explains the overall variance seen in
gene expression measurements in each disease and both together, the variance seen in
gene B is best used to split the two diseases. Although this is easy to distinguish in this
simplified two−dimensional case, it is not so easily visualized in a real−world,
multidimensional data set.
Which gene−gene associations best differentiate these two groups of tissue samples?
Answering this question requires a data set with sufficient measurements from the two types
of tissues, and the analysis involves a combination of approaches. First, for each of the two
tissue samples, one can first comprehensively compute a dissimilarity measure for all the
gene−gene pairs. Then one can use a supervised approach to compare the dissimilarity
measure for the two tissue types.[9] For example, if the expression pattern correlation
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coefficient between gene A and gene B was .95 in breast cancer, but was .25 in lung cancer,
one might make a biological hypothesis that there is a difference in this interaction between
the two diseases.
Which genes have a pattern similar to this organismal, phenotypic, or environmental factor?
If one can treat the external factor as a hypothetical gene expression pattern, then one can
apply the supervised nearest neighbor technique to determine genes most similar to that
pattern.

• 

[9]That is, we compare the measure−triangles for each tissue. The elements of the measure−triangle
that are most different will suggest different relationships between the gene pairs corresponding to
each of these dissimilar elements of the measure−triangle. Because the whole measure−triangle is
used, the result is comprehensive.

4.12 Determining the Significance of Findings

One traditional way to gauge whether the findings for a particular microarray analysis are significant
is to establish whether statistical significance is present. Traditionally, this involves the use of
particular algorithms or formulas to determine the likelihood that that particular finding was governed
simply by random chance. For example, in traditional clinical trials, when a study finding is noted to
have a statistical significance, or p value of <.05, the assumption is that the likelihood of the findings
in that particular analysis being due to random chance is less than or equal to 5 chances in 100.

These analyses are problematic when applied to functional genomic data sets. Suppose we have
10 tissue samples from patients with disease and 10 samples from patients without the disease. For
a single gene, we can estimate how likely it is that the observed difference in the means of the
expression of that particular gene in the two sets of samples could be attributable to chance. A
simple lookup in the probability density function for that statistical test (e.g., a t−test) will provide this
estimate. However, if the p value is found to be < .05 for that particular gene, then in a gene
expression microarray measuring the expression of 10,000 genes, this would mean that we would
expect to find the observed difference between the mean expression values across the two sets of
10 samples for 500 genes solely due to chance.[10] Determining how to obtain the significance
threshold for all the different bioinformatics techniques we have described above is an active area of
research but has yet to make its way into the mainstream of published microarray analyses.
Instead, pragmatic tests of the robustness of the results found have been adopted of the form
described below.

4.12.1 Permutation testing

With the large number of comparisons being made, a valid criticism should be raised that perhaps
high correlation coefficients or extreme values in other dissimilarity measures are found due to
chance. One way to counter these arguments is to estimate how often random chance would
generate correlation coefficients of the magnitude obtained in the original analysis. Typically, this is
done through use of permutation testing.

One can take the entire array of cases and features (i.e., samples and genes, respectively) and
randomly shuffle the values in each column of features, thus breaking the links between the
features. The mean and standard deviation expression level for each gene would remain the same.
One can then repeat the entire analysis (e.g., dendrogram or relevance network) that one is
performing 10 or 100 times or more to determine the strongest dissimilarity measure calculated.

For example, let us assume we are analyzing a microarray data set with 60 cancers and 2000
genes measured in each of those cancers. We want to perform a dendrogram analysis on this data
set. As before, we would start by calculating the comprehensive pairwise comparisons. Within this
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large set of comparisons, are high correlation coefficients likely to be spuriously generated? One
way to answer this is to take each of the genes and randomly shuffle the gene expression
measurements among the cancers and then repeat the entire comprehensive pairwise calculations.
This permutation and calculation of the measure−triangle is repeated several times. For each
iteration, the distribution of  values is stored. After all the iterations we will have a distribution of
correlation coefficients from the original data set as well as several or an averaged distribution of
correlation coefficients in the permuted and randomly shuffled sets. This is shown in figure 4.15.

Figure 4.15: Distribution of  in the original versus permuted gene expression data set. The
distribution of  calculated using an original gene expression data set is shown with solid circles.
For each gene, expression measurements were independently randomly shuffled 100 times. The
average distribution of  is shown with error bars covering 2 SD. In this example, random
permutation was unable to create an association with  or < �.85. (From Butte et al. [39].)
If there is structure in the expression data set that is more robust than what would be expected by
chance, the distribution of correlation coefficients from the original analysis should be wider than the
distributions of the randomly permuted sets. We view this difference in area−under−the−curve
between the two distributions as a measure of the signal−to−noise in the analysis. If the distribution
of correlation coefficients in the randomly permuted data sets is as wide as the distribution
correlation coefficients from the original unshuffled data set, it is a clear indication that the high
correlation coefficients being seen could very well be due to random chance.

This permutation testing does not substitute for a p value, as traditionally used in tests for statistical
significance, but it is one generally accepted way (in the functional genomics literature) to test a
novel clustering algorithm and its application to determine whether findings are otherwise
significant.

4.12.2 Testing and training sets

Perhaps the best way to test a model, whether constructed in a supervised or unsupervised
manner, is to evaluate that model on a new set of inputs. This is typically done by determining a
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priori those inputs that will make up the training set (i.e., the input samples used to create the
model), and those that make up the testing set (i.e., those that will be used to test the model). It is
important to determine whether population−measurable characteristics are similar between these
two sets. For instance, one may want to train a system using samples from one type of tissue, and
test it using another type of tissue.

This type of testing is crucial in that it prevents the generation of models that overfit the original
input data. It is easy to describe overfitting with an example. Imagine a thought experiment where
one takes a list of tyrosine kinases (e.g., insulin receptor, IGF−1 receptor) and phosphatases (e.g.,
PP1, PTP1B). Each one is written on a flashcard, along with one of the two category names. Now,
one shows the flashcards to a child repeatedly. When later quizzed with cards without the category
names, the child may be able to properly assign the function just by noticing that within the input
set, whenever the name contained the word "receptor," the card was referring to a tyrosine kinase.
Needless to say,the "rule" this child generated is quite specific to the particular set of input samples
and their representation on flashcards.

Because so many features are typically present in microarray data sets, and because there are so
few categories into which the samples have to be classified, it becomes very easy for a
machine−learning mechanism to generate large numbers of "rules" specifying how each feature can
accurately select the proper category. However, the characteristic of these genes may be specific
only to the input sample set at hand, and those rules may not be generalizable to other input
samples. Thus, it becomes important to test these rules using independent inputs.

At the risk of redundancy,we emphasize that finding test and training sets that are highly
comparable is of paramount importance. In the discussion of the sources of noise in microarray
experiments (section 3.2), we demonstrated that we could cluster a set of leukemia experiments
into their original test and training sets because of systematic differences in the measurements in
the test and training sets (figure 4.16). In the presence of such systematic biases, the inaccuracy or
accuracy of a clustering or classification technique on a test set may not be a meaningful measure
of its performance.

Figure 4.16: Identifying differences between the test and training sets through clustering. The matrix
incision tree algorithm from [108] was applied to the leukemia classification problem published by
Golub et al. [78]. The algorithm correctly clustered 64 of the overall 72 cell lines (94%) in the data
set, placing the acute myelogenous leukemia (AML) samples in branches (c) and (d), the acute
lymphocytic leukemia (ALL) samples in branches (a) and (b), and misclassifying four ALL samples
into branches (c) and (d). However, the matrix incision tree also successfully revealed the distinction
between the published training set (cases 1–38, italic, placed in branches (b) and (c)) and the test
set (cases 39–72, placed in branches branches (a) and (d)) with 100% accuracy. It is unlikely that
the biology of the test set of the AML and ALL cell lines were that different from the cell lines in the
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training set. It is much more likely that systematic changes in the hybridization conditions, or
different sample preparation, or the use of a different batch of microarrays were responsible for the
clustering of test versus training sets.
Cross−validation testing Cross−validation is a classic approach to testing for robustness in
models generated by machine−learning algorithms, built on the idea of having both a testing and
training set, but for use when the total number of inputs is small. This technique works by repeatedly
partitioning the available input into subsets for repeated trials. For each of these subsets, the
algorithm or machine−learning technique is run and the output model is saved. After all the trials,
the set of output models can be analyzed to determine those characteristics or features that are
consistently represented across the trials. As an example, if in 10 trials, gene A is always found to
accurately classify a set of samples between two diseases, but gene B accurately classifies in only
6 of the 10 trials, then gene A may be viewed as a more robust classifier, in that it may be less
influenced by particularities of a single input set.

The traditional way this is performed is using n−way leave−one−out cross−validation, where n is the
number of input samples: n input subsets are created, each missing the nth sample, then the
machine−learning technique is applied to each of these input subsets. Cross−validation testing is
easier to apply to supervised learning methods than to unsupervised, as it is difficult to determine
accurate metrics for deciding on the strength of the generated unsupervised models. This approach
has been used in several published works, including [19, 33, 46, 60, 72, 78, 86, 90].

4.12.3 Performance metrics

In evaluating genes or features that are meant to decide one category versus another, other
relevant performance metrics include sensitivity, specificity, positive predictive value (PPV),
accuracy, and area under the receiver operating characteristic (ROC) curve [79].

Let us refer to the state of disease or any category of interest as the "disease state" and all other
categories or states as "nondisease states." The sensitivity of a test measures the proportion of
correctly categorized disease cases out of the total number of actual disease cases, while specificity
measures the proportion of correctly categorized nondisease cases out of the total number of actual
nondisease cases. Positive predictive value is the fraction of cases correctly categorized as disease
over the number of all disease cases, regardless of categorization. Accuracy is calculated by the
ratio of correctly categorized cases over all the cases.

To further illustrate these metrics, figure 4.17 shows a contingency table in which the two classes
are called 0 (non−disease) and 1 (disease). The vertical groupings of cases are gold
standard−labeled[11] cases belonging to each class. The horizontal groupings may be cases
automatically categorized into each class. For example, a cases and c cases were actual class 0
cases, though a cases and b cases were labeled by a particular model as class 0. Similarly, b cases
and d cases were actual class 1 cases, while c cases and d cases were labeled by a particular
model as class 1. The relevant performance metrics in equation form are then as follows:
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Figure 4.17: Contingency table illustrating performance metrics for classification algorithms.

4.12.4 Receiver operating characteristic curves

The ROC curve is a plot of sensitivity versus one minus specificity. Because sensitivity and
specificity can be inversely varied by altering the threshold at which a case is categorized as one
class or the other, the area under the ROC curve more effectively describes a classification
algorithm's discriminatory ability. Stated differently, for a particular implementation of a classification
algorithm, the trade−off between sensitivity and specificity is fixed as specified by the ROC curve.
To find a different trade−off, one must obtain a different classification algorithm implementation that
produces a different ROC curve. This is elaborated upon in figure 4.18.
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Figure 4.18: Sensitivity and specificity trade−offs are defined bythe ROC curve. ROC curves A, B
and C describe the trade−offs in sensitivity and specificity for the same data set using three different
classification algorithms. C is clearly the best algorithm because the area under the curve is the
highest. That is, it provides a better set of sensitivities and specificities for all values of these. In
contrast, B and C provide trade−offs inferior to A and for some range of sensitivities, B provides
better performance than C, and vice versa.
To calculate the ROC curve for a single continuous variable[12] all that is required is to obtain the
sensitivity and specificity at a sufficient number of thresholds. The procedure is somewhat more
complex with classification models that involve different thresholds on several variables. For
example, for decision trees, ROC curves are determined by first assigning to each tree leaf the
probability of being an event for a set of derived values that percolates to that point. These
probabilities are based upon the ratio of events to nonevents that fall into each leaf during training.
The threshold for considering a case to be event or nonevent is then set at each leaf probability
value. The resulting sensitivity−specificity pairs, when plotted on a grid of sensitivity versus
(1−specificity), gives the ROC curve.[13]

[10]Many assumptions go into this estimate, including clearly erroneous ones such as the
independence of all genes in their expression patterns.
[11]For example, defined classes of two different types of leukemia as judged by an expert panel.
[12]For example, if gene A > threshold, then the prediction is that the sample is from a patient with
the disease, and if gene A d threshold, then the prediction is that the sample is from a patient
without a disease.
[13]However, because the number of leaves in a decision tree are finite, the number of points that
can be ascertained for that ROC curve is correspondingly finite and therefore the curve appears as
a segmented trajectory of straight lines.
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4.13 Genetic Networks

It is a testament to the ambitions of bioinformaticians that among the principal early goals they had
for the use of microarray data was nothing less than to reverse−engineer the genetic networks
responsible for maintaining cellular function. Although these ambitions may have been somewhat
premature, we include them here because the goal of elucidating genetic networks remains a major
challenge and problem of interest in this field.

4.13.1 What is a genetic network?

As covered in section 1.5, every human cell has on the order of 104 genes. Typically, not all the
genes are expressed equally at any one time. At different stages of development, or as a response
to extracellular perturbation, different genes of a cell are switched on at different intensity levels and
at various time points. The genes and their associated, generally time dependent, levels interact
with one another in a sophisticated regulatory web of cause and effect known as a genetic network.
Restated, genetic regulatory networks are the set of mutually activating and repressing genes and
gene products and their interactions [64].

It is generally difficult, if not impossible, to come up with the full set of parameters which completely
characterize a genetic network. These parameters may be intracellular in nature, such as the mRNA
concentration of another gene; intercellular, such as a hormone secreted by one organ to
communicate a signal to another; or extracellular, such as an environmental condition like heat
shock. Uncovering and understanding these interactions may potentially lead to new applications
and insights on developmental disorders and diseases such as diabetes, cancer, and others.

The expression level of a gene is manifest by the presence of mRNA corresponding to its DNA
transcript. Qualitatively, it is commonplace to say that a particular gene is highly expressed when
high levels of its complementary mRNA are detected, whether by Northern blot, PCR, or microarray.
Quantitatively, the reader may ask the obvious and more delicate question of how much mRNA
should be present in a system in order that the gene be critically expressed so as to effect a
biological state transition. In practice, this question is made more difficult by the realities of detection
device sensitivity, repeat measurement variations, and how one defines a measurable biological
state transition.

With the advent of microarrays, it has become possible to measure, in a relatively accurate and
easy way, the expression levels of a great number of genes simultaneously. As a consequence, it is
now possible to investigate topics such as time course development and drug intervention within the
framework of the coordinated action of an entire transcriptome—the cellular genetic network—with
the objective of reverse−engineering or unraveling the system's internal interdependencies.

4.13.2 Reverse−engineering and modeling a genetic network using limited
data

Presently, microarray technology cannot yet measure the expression levels of all genes of an
arbitrary biological system. Furthermore, there is the measurement technology−independent
complication noted earlier such that it is generally impractical to obtain the full set of parameters that
completely determine the state transitions of the system. Here, in essence, the reverse−engineering
of a typical genetic network would mean uncovering dependencies and causal relationships
between genes using a limited data set or knowledge base. Data in this context include empirical
measurements of the respective components, in particular the mRNA levels, as well as a priori
biological facts about the system under investigation. The information is limited in the sense that we
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do not have corresponding data from every gene present in the system and, furthermore, the data
we do have inevitably contain measurement or experimental errors. An example: Suppose that a
researcher wants to study the interaction between two mouse genes, gene A1 and gene A2, in liver
from the day of birth until 1 week later. The researcher will use a robotically spotted microarray with
probes for genes A1 and A2. As samples, she or he harvests liver cells at N uniformly spaced time
points from postnatal day 1 to day 7. Let us consider the possibilities of interaction or regulation
between A1 and A2, as discussed in [164]:

A1 regulates A2, or vice versa. This interaction may be indirect, propagating through an
intermediate cascade of other genes which are not being assayed.

1. 

A1 and A2 are co−regulated by another gene or a subset of genes.2. 
A1 and A2 do not interact with one another nor do they share a common coregulator.3. 

The term regulate here carries causal implications. One way to translate the biological statements
above into mathematical formalism is to say that (1) and (2) are equivalent to saying that A1 and A2
are not stochastically independent, whereas (3) says that A1 and A2 are stochastically independent.
An immediate question that comes to mind is whether it is technically possible to infer causal
relationships between genes by their expression level data alone. For such a scenario, the most
typical mathematical tool that our researcher could apply is the linear or rank correlation coefficient,
r—provided that the number of time point measurements at which a gene is assayed, N, is large
enough,[14], for if N = 2 then any two genes are perfectly (and vacuously) correlated. As noted in
[164], the observation of correlation between pairs of variables is commonly used in biology to
predict causal relationships which have to be validated biologically. Indeed, that observation drives
much of the data−mining machinery discussed in this chapter.

From a purely mathematical standpoint, correlation cannot be used to rigorously prove or disprove
the existence of such relationships. Recall from our earlier review section on correlation (section
3.6.1) the basic rule of thumb that while independence implies zero correlation, the converse is not
generally true. In spite of this, a high enough correlation (say |r| > 0.9, by no means a formal
threshold) between genes A1 and A2 is a reasonably strong argument for further laboratory
investigation of the pair, after taking into account the size of N, measurement errors in the primary
data, and established facts about the pair's biological background.

Another approach to analyzing a genetic network is to view the whole as a dynamical system, not
just consisting of pairwise interactions, and to take advantage of the traditional systems tools that
already exist, (see [80] and [58]). Suppose that our researcher measures the expression level for
genes Gj (j = 1,…, M) at times ti (i = 1, …, N), denoted by xj(ti). We also suppose that the expression
level of a gene Ak at time tq (q > 0) is a linear combination of the expression levels of all other genes
Gj from the previous time step tq‘  [or more generally from all previous time steps tr (0 < tr < tq)],

or rewriting in a matrix format,

where wk,j is a weight term encoding the influence of the expression of gene Gj on the expression of
Gk, and ²k is a parameter which may be stochastically distributed which could encapsulate a priori
knowledge about regulation. Note that Eq. (4.13.1) is linear in the expression quantities and is
first−order Markov, i.e., the state of the system at time tq is entirely determined by the time tq‘  state.
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We could also write Eq. (4.13.1) as a difference equation in keeping with our systems viewpoint,

where ”xk(tq‘ ) P xk(tq) � xk(tq‘ ). Unlike the classic system of difference equations, wi,j here are the
unknowns and xj(tq)are the known measured quantities. In general, wk,j ` wj,k. Recall from linear
algebra that in order to solve for the M2 unknowns wi,j uniquely, one needs to have M2 different
equations Eq. (4.13.2); in other words, there should be enough data time points. If the number of
unknowns exceeds the number of equations, then the system is underdetermined and may have
infinitely many solutions for wi,j. Conversely, if there are more unknowns than there are equations,
then the system is overdetermined and it may be algebraically insoluble. In this situation, one can
attempt to find a weight matrix wi,j that "solves" the system in the sense of minimizing an ad hoc
energy functional. A typical example of this approach is the least squares fitting of data to a line
where the energy functional is the sum of distances from the fitting line. Once the weights wk,j in Eq.
(4.13.2) have been computed and we suppose as modell ing assumption that  wk , j  are
time−independent, then Eq. (4.13.2) is a well−defined difference system and one may apply
standard dynamical systems or Markov chain techniques to explore interpolation and
prediction−type questions such as:

As a reality check: Does the computational result or prediction agree with the outcomes from
the original physical experiment?

1. 

How would the model Eq. (4.13.2) evolve under a different set of initial states—simulating a
different experimental setting? Are there particular initial conditions which lead to
dramatically different subsequent behavior in the presence of a small perturbation?
Continuous dependence on initial state or bifurcations?

2. 

If we removed the time−series data for a gene Gk and recalculate the weights wi,j, how
different is the resulting model from the one with Gk present?

3. 

What is the asymptotic or steady−state behavior of Eq. (4.13.2)? Attracting sets, hysteresis
cycles, recurrent states?

4. 

The state of a system at any time tq refers to the collective expression profiles xk(tq) for k = 1, …, M.
In a developing hippocampi system modeled with Eq. (4.13.2), Somogyi et al. found that the weight
matrices were sparse i.e., most of the entries were 0, in agreement with the generally accepted
in tu i t ion  tha t  genes are  not  regu la ted equa l ly  by  every  o ther  gene [164] .  From a
computation−theoretic point of view, it may also be interesting to study the time−continuous analog
of the difference equation (4.13.2), which would be a system of linear differential equations,

or stochastic differential equations, if we allow ²k to be a specific probability distribution as in [109].
When one has a deterministic system of linear ordinary differential equations, Fourier or wavelet
methods could be used to transform into a system of algebraic equations.

An attendant complication with these methods is the aliasing phenomenon. One could potentially be
undersampling the respective RNA levels below the fundamental frequency (probably cell
cycle−related) of the biological system. As is well−known in signal processing, it is not possible to
reconstruct the originating signal from samples that were obtained less than twice the threshold rate
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known as the Nyquist frequency. The model can easily be generalized to become a nonlinear one
by letting wj,k be both a function of time and expression, or to a higher−order Markov by assuming
that the expression level of Ak at tq depends upon the expression levels of Aj's for other previous
times tr, 0 < tr < tq. Weaver et al. [186] and Wahde and Hertz [185] studied a modified version of Eq.
(4.13.1),

where g(y) = (1 + e»y)‘  is a modified step function where » > 0 is the rate that the value of g
changes from 0 to 1 at y = 0. When » ‘ �, g(y) = 0 (resp. 1) for y < 0 (resp. y > 0).

There are several biologically based reasons to motivate this step function−like form of g (e.g., upon
binding of a transcriptional repressor or initiation of a kinase cascade). Note that g has a
well−defined inverse function, g‘ . The weights of the system above can be solved via linear
algebra after applying g‘  on both sides of the equation. Operating within the systems paradigm,
Hanke and Reich [83]and Somagyi and Sneigoski [164] have also modeled Eq. (4.13.2) as neural
networks which have the advantage that one could train the parameters—in this case, the weights
wi,j—to match the data set. Potential issues here include the selection of the type of neural network
that is optimally suited to the questions being studied, the length of time required for training, and
the characteristics of the training set.

Thus far we have considered the expression levels xk to be essentially continuous variables
interacting in a linear combinatorial manner. One may as validly let xk be a discrete−valued variable
taking values 0 and 1, where 0 indicates that gene Ak is off and 1 on, to produce a Boolean network
as in [119]. State transitions are captured by a truth table which we have to discover using ad hoc
rules optimizing mutual information.

Recently, there has been active work in the area of analyzing genetic networks within a probabilistic
framework; of particular note is the application and development of bayesian models of gene
expression and interaction which will be detailed in the next section.

It probably bears repeating here that no mathematical treatment of observational data will be
suffcient to be convincing about genetic causal relationships. For that to occur, the tried−and−true
methods of scientific hypothesis testing (see figure 2.2) and the concomitant "wet" laboratory work
will remain necessary. Therefore it should not be too disappointing to note that we have still not
adequately addressed the issue of how one may infer causal relationships from expression data, in
particular limited expression data. From the purely computational point of view,it is not possible to
do this without the aid of established biological facts and experimental intuition. This in turn requires
a productive functional genomic pipeline of the sort diagrammed in figure 1.3.1.

4.13.3 Bayesian networks for functional genomics

Bayesian networks (BBNs) [139], also known as causal probabilistic networks, represent one of the
most successful advances of artificial intelligence (AI). Born at the confluence of statistics and AI,
BBNs provide a sound way to discover models of interaction among variables. When applied to
functional genomics, they offer the opportunity to discover complex pathways of activation and
interaction among genes. Although still in an early stage, the applications of BBNs to functional
genomics already displays the common problems statistical methods encounter in the realm of
functional genomics: the large number of variables met by a small number of cases and the
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consequent under−determination of the models learnable from data. Nonetheless, because BBNs
provide at least the potential of determining genetic networks on the basis of probability theory, and
therefore all the desiderata that flow from such a grounding, they are beginning to attract increasing
interest in this field. This section first reviews the basic concepts underpinning BBNs and then
describes the early attempts to apply this methodology to functional genomics.

Bayesian networks Bayesian methods provide a sound and exible framework to reason about the
interplay between conditions and effects under uncertainty. The theoretical core of bayesian theory
itself—the well−known Bayes' theorem—is built around the intuition that the path leading to an
effect can be reversed and a probability can be assigned to the set of possible conditions
responsible for that effect [148]. The resulting approach also provides a straightforward way to
integrate human−derived domain knowledge and domain information coming from field operations
(i.e., empirical biology) or simulated data.

The bayesian approach shares, with all sound knowledge representation formalisms based on
probability theory, two main drawbacks. The first is representational in nature and arises from the
fact that a naïve encoding of knowledge as a joint probability distribution of all the variables in the
domain is very difficult to acquire from human experts. The second is computational, but is still
based on the same naïve interpretation of the probabilistic representation: The probability
distribution over the domain variables, so difficult to acquire from experts, can grow so large to be
very costly to store and very expensive to use for reasoning.[15]

Blending together probability and graph theory, BBNs provide a way to render the probabilistic
representation of knowledge representationally amenable and computationally feasible. A BBN uses
conditional independence assumptions encoded by a Direct Acyclic Graph (DAG) to break down an
otherwise unmanageable joint probability distribution over the domain variables into a set of smaller
components, easier to define and cheaper to use. In a BBN, the nodes in the graph represent
variables and directed arcs represent stochastic dependencies among the variables. As a simple
example, consider the scenario displayed in f igure 4.19 composed of three variables,
Initial_Condition, External_Action, and Effect, each having two states "True" and
"False." The joint effect of the the two parent variables on the Effect is represented by the DAG in
f igure  4 .19,  w i th  the d i rec ted l inks  f rom the var iab les Initial_Condition  and
External_Action pointing to the variable Effect. Following the direction of the arrows, we call
the variable Effect a child of Initial_Condition and External_Action, which become its
parents.

Figure 4.19: Example of a bayesian network. This network describes the impact of
Initial_Condition and External_Action on Effect. This network is equivalent to the
underlying joint probability distribution over the three variables, shown in table 4.1.
In particular, figure 4.19 shows a BBN representing the combined action of a quite frequent
Initial_Condition (90% chance of being true) and a rarely taken External_Action (20%
chance of being true) over an Effect. The probability table associated with the node Effect
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shapes the interplay between Initial_Condition and External_Action so that, when only
the Initial_Condition  is in place, then Effect  wi l l  be present for sure, unless
External_Action is deployed to dilute the impact of the Initial_Condition. This mechanism
is described by the fact that, when Initial_Condition is true and External_Action is false,
the probability that the Effect is true is 1, whereas when Initial_Condition is true and
External_Action is also true, then the probability that the variable Effect is true is only 0.2. On
the other hand, when the Initial_Condition is not in place, then the Effect is always absent,
regardless of the presence or absence of the External_Action. The BBN in figure 4.19
decomposes the joint probability distribution of the three variables in table 4.1 into three probability
distributions, one for eachvariable in the domain. This decomposition is the key factor for providing
both a verbal and a human−understandable description of the system, like the one used for the
BBN in figure 4.19, and for efficiently storing and handling this distribution, which grows
exponentially with the number of variables in the domain.

Table 4.1: Joint probability distribution over the domain variables

Initial_Condition External_Action Effect
True True True 0.036
True True False 0.144
True False True 0.720
True False False 0.000
False True True 0.000
False True False 0.020
False False True 0.000
False False False 0.080

Notwithstanding these differences, both the BBN and the joint probability distribution represent the
same  s tochas t i c  mode l  o f  t he  comb ined  Effect  o f  Initial_Condition  and
External_Action. The BBN can therefore be used to perform all the kinds of reasoning
operations provided by a probabilistic representation of the system. As mentioned before, bayesian
theory provides naturally a variety of methods to reason about the behavior of a system and to
understand the interplay between its conditions and its effects. Assuming suffcient microarray data
(a difficult assumption at present, but likely to become less so in the near future), this is suffcient to
model cellular physiology.[16] Given a set of initial conditions, a BBN can forecast their effects
(prediction—particularly useful for hypothesis testing). Conversely, a BBN can walk backward a
chain of dependencies and determine the probability of the Initial Condition given the observation of
an effect (explanation—essential in understanding complex genetic networks). Even more
interesting, a BBN can identify the best configuration of initial conditions to achieve a particular
effect (optimization—again useful for generating testable hypotheses as well as identifying
pharmacological targets), and can identify the individual contribution of an Initial Condition to the
realization of an effect. This ability to propagate information along the network without a
prespecification of the inputs allows the analyst to "drop" evidence and conjectures into the network
and figure out the effect of different initial conditions by "flickering" the input of the system or
demanding different outcomes (sensitivity analysis).

Although, in their original concept, BBNs were designed to encode knowledge of human experts,
their statistical roots soon prompted the development of methods able to learn them directly from
databases. The advantages of modularity and compactness did not go unnoticed in the statistical
community,so that BBNs and, in general, graphical models, enjoy a growing popularity in statistical
practice, disclosing new directions for research and applications. The process of learning a BBN
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from a database consists of the induction of its two different components:

The graphical structure of conditional dependencies (model selection)1. 
The conditional probabilities quantifying the BBN (probability estimation)2. 

Here, we take a bayesian approach to "learning" BBNs, so that the process of learning probabilistic
models is regarded as the process of updating prior information on the basis of available evidence.
This framework fosters the integration of expert domain knowledge and data analysis; when
available, expert knowledge can be integrated in the discovery process but it is not necessary, as in
traditional knowledge−based systems.

On the other hand, lack of human expert knowledge can be represented by uniform prior
distributions of probability, and the discovery process is totally left to data. As far as AI is concerned,
this line of research was pioneered in [168, 52]and further developed in [36, 88]. A parallel line of
research is going on in statistics, in the field of graphical models in [190, 115]. The deep theoretical
connection between probability theory—the foundation of BBNs—and statistics creates a powerful
link able to provide scientific meaning and development methods.

Current bayesian techniques for learning the graphical structure of a BBN from data are based on
the evaluation of the posterior probability of network structure, i.e., the probability of the graphical
model conditional on the data. We can take this measure as a scoring metric to compare alternative
models of interactions, e.g., to identify the most probable set of variables which are parents of a
phenotype. This probability is then used as scoring metric to discriminate among a set of possible
models. We are therefore looking for a way to compute the probability p(M|”) of a model of
interaction M given the data ”. By Bayes’ theorem we have

As we are using this quantity to compare models and all models are compared over the same data,
p(”) turns out to be a constant and can be removed. If we assume that all models are equally likely,
as is appropriate for an unsupervised method, then the quantity p(M|”) becomes proportional to the
quantity p(”|M), known as marginal likelihood, which can be efficiently computed in closed form.

The decomposition of the joint probability distribution induced by the graphical model decomposes
the marginal likelihood p(”|M) of the entire model into the product of the marginal likelihoods of each
node and its parents, so that we can learn a model locally, by maximizing the marginal likelihood
node by node. Still, the space of the possible sets of parents for an effect grows exponentially with
the number of parents involved, but successful heuristic search procedures exist (both deterministic
and stochastic) to render the task feasible. The decomposition of the marginal likelihood allows the
user to assess locally the strength of the dependency of an effect upon its parents as a comparative
measure against rival models (including the model in which the effect is not influenced by any
variable reported in the database). While the marginal likelihood per se is difficult to interpret, it can
be used to compute a more intuitive measure, known as the Bayes factor, to assess the strength of
evidence of one model against another model. Since the Bayes factor is the ratio

between the posterior probability of two alternative models M1 and M2, under the same assumptions
used in the reduction of Eq. (4.13.3), the Bayes factor can be computed as the ratio of the marginal
likelihood

160



of the two alternative models. This more intuitive measure will tell the analyst how many times the
model M1 is more probable than model M2, and the confidence in the selected model will be a
function of the distance between the selected model and the most probable alternative models
[105]. Once the graphical model is known, the decomposition of the underlying joint probability
distribution induced by the graphical model provides, once again, efficient methods to learn the
conditional distributions that quantify the dependencies in the network by taking advantage of local
computations and conjugate analysis.

Bayesian networks applications in functional genomics BBNs are not new to genetic research.
In fact, networks based on directed acyclic graphs actually originated from the genetics studies of
Sewall Wright [194], who developed a method called path analysis [195, 196], a recognized
ancestor of BBNs. The application of BBNs to functional genomics is, on the other hand, very
recent. bbns hold the promise of answering very interesting questions in functional genomics and, in
principle, they seem to be the right technology to take advantage of the massively parallel analysis
of whole−genome data to discover how genes interact, control each other, and align themselves in
pathways of activation.

BBNs offer a different view than do the more popular clustering algorithms currently used for the
analysis of massively parallel gene expression data [63, 167]. While these algorithms attempt to
locate groups of genes that have similar expression patterns over a set of experiments to discover
genes that are co−regulated, BBNs dive into the regulatory circuitry of genetic expression to
discover the web of dependencies among genes.

The promise of BBNs in functional genomics goes even further, as intensive research efforts have
been addressed, during the past decade, to define conditions under which BBNs actually uncover
the causal model underlying the data [140, 89]. The most ambitious question is therefore the
following: Given a set of microarray data, can we discover a causal model of interaction among
different genes? The challenge is the common problem of sound statistical methods when faced
with microarray data: a large number of variables with a small number of measurements. In the
context of BBNs, this situation results in the inability to discriminate among the set of possible
models as the small amount of data is not sufficient to identify a single most probable model.

Friedman et al. [71] address these problems using partial models of BBNs and a measure of
confidence in a learned model. The strategy they follow is to search a space of underspecified
models, each comprising a set of BBNs, and select a class of models rather than a single one. They
also adopt a measure of confidence based on bootstrapping to evaluate the reliability of each
discovered dependency in the database to avoid the risk of ascribing a causal role to a gene when
not enough information is actually available to support the claim. Hartemink et al. [85] are tackling
the underdetermination problem by tuning the unsupervised search of the most probable network
structure. They leverage on established biological knowledge to select a small number of networks
and then limit their comparisons to these networks only.

The use of BBNs in functional genomics is still in its infancy and the common problems of functional
genomics data have still to be solved and much work is still left to render the technology fit for the
task. Nonetheless, even these early efforts make clear the potential of these methods to dissect the
inner structure of the regulatory circuitry of life.

[14]In practice, sufficiently high−resolution time series of microarray measurements performed over
an adequate interval are rare if not absent.
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[15]See the discussion of the appetite for hard−to−get probabilities in Szolovits and Parker [173].
[16]With the caveats about false reductionisms articulated in section 1.4.1.
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Chapter 5: Bio−Ontologies, Data Models,
Nomenclature

Overview

Suppose that you have mastered normalization of microarray data sets, performed experiments to
ensure reproducibility, and then gone on to acquire several large data sets and have now completed
your clustering or classification experiments. Remarkably, after that preparation, you have what
looks like a very nice set of results where the clusters of genes you found on one set of experiments
have reproduced beautifully in another set of experiments that were designed to be identical.
Furthermore, every time you slightly permute the conditions from those in the control or baseline
condition, the sets of genes in the clusters seem to have changed in reproducible ways. And
furthermore, the clusters appear to be compact and distinct so that you suspect that you have
identified truly significant, functionally related genes.

If one steps back a little at this point, it becomes less obvious what the meaning is of all the effort
that one has invested to date, because what one actually has generated is a list of microarray
accession numbers. Even an experienced functional genomicist looking at this list of numbers will
not have the vaguest idea of what it means. Some of these accession numbers cluster two or three
genes, while other clusters include hundreds. At this point, the functional genomicist has very little
alternative other than to look up the genes corresponding to each microarray accession number one
by one and then peruse the literature regarding each one of the of the genes to determine

whether that gene has a known function, and if so, in what class (e.g., transcriptional factor,
metabolic enzyme, structural protein, combinations of these, etc.);

• 

whether the genes found clustered together have been described in the literature as being
functionally similar or related, or perhaps share promoter motifs, or a subset of the cluster
are transcription factors for the rest of the cluster;

• 

whether homologs or orthologs have been found to be functionally related in any known
physiological or pathological state;

• 

whether the resultant genes are known to be associated with the experimental conditions
tested.

• 

To the degree that the functional genomicist understands basic biology, this task is somewhat more
tractable. A competent biologist will acquire in the course of his or her training a large framework of
functional dependencies of different biological processes and the genetic machinery that underlies
these dependencies. This kind of knowledge is unlikely to be present in any single journal article.
Even a review article presumes a large shared body of biological knowledge that will be opaque to a
researcher unfamiliar with a particular corner of the large space of biological knowledge. Without
this rich context, many insights that the analyses might suggest will be missed. Consequently, a
biologist familiar with the specific biological phenomenon being studied will be an invaluable
collaborator in interpreting the meanings of the results from analysis of these massively parallel data
sets. However, even a competent biologist armed with a very efficient search engine of the
biomedical literature will find that determining whether the functional dependencies found in these
clusters make any particular sense will take a very long time, often more than any other part of the
analytic methodology of functional genomics.

Consequently, after having undertaken this laborious, rote lookup process several times, the
following fantasy occurs to most genomicists: "Wouldn't it be nice if I could look at the cluster and
automatically see that one of the clusters contained both genes coding for known transcriptional
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factors and genes coding for structural proteins, and under two pathological conditions, those
structural proteins were only translated if the transcriptional factors in that same cluster were
expressed at their highest levels. Also, six researchers have developed mouse models in which four
of these genes in that cluster have been misexpressed, and those mouse models can be obtained
by filling out a form on a specified website…"

Enticing as this fantasy is, unfortunately, it does not represent the current state of the art. However,
there are many early efforts to achieve this goal. Some skeptics will note that this is an "AI complete
problem" [7] in the sense that reaching the goal outlined in the above scenario would really be
equivalent to significant progress in the development of machine intelligence that can reason in a
commonsensical fashion about a wide range of heterogeneous knowledge. However, as we shall
see from some of the early efforts below, even a much more modest set of goals might be quite
useful for the purposes of the functional genomicist. The technological solutions provided to achieve
these goals fall into three increasingly circumscribed tasks: development of bio−ontologies,
development of common data models, and development of common nomenclatures.

5.1 Ontologies

The term ontology is in its current usage substantially different from its original philosophical
meaning, which was the "study of the nature of being." However, as most modern linguists will
acknowledge, correct usage in the end is determined by widespread current practice and currently,
the term ontology encompasses the study of formalized descriptions of all entities within the area of
interest or research and all the relationships between those entities. In the discipline of functional
genomics, bio−ontologies refer to organized and formalized systems of concepts of biological
relevance in which the relationship between these concepts can be qualified. Before we proceed to
some of the technical aspects of ontologies and examples of the more successful bio−ontologies,
we list some notable efforts at creating usable bio−ontologies. First, we list here some additional
motivations for the development of bio−ontologies.

The need for a communal memory in the context of exponential growth in the amount of
genomic information. That is, at the very least, we want to be able to share the biological
knowledge that we are able to derive from our experiments, both to avoid duplication and to
build on the experience of others.

• 

If we are to automate the process of sharing knowledge and use the prior inferences of
functional dependencies, then the ontology must have sufficient formalization to enable a
computational process that is both sound and efficient. As will be discussed briefly below
(section 5.2), there is a natural tension between developing ontologies that are sufficiently
expressive and those that are sound and efficiently computable.

• 

In order for a bio−ontology to be truly useful, it needs to be able to communicate the
definition of terms in a reader− and context−independent way. This is particularly important
in the domain of functional genomics because of the multiplicity of function of genes. For
example, a gene's products will often have diverse functions within the same cell or even
within the same subcellular compartment, and most often in different tissue types and under
divergent environmental conditions. Stated in the converse, a gene's function will be highly
determined by the subcellular context of its protein and the other coexpressed genes. For
example, medium−chain dehydrogenase serves as a metabolic catalyst in one context, and
in another it serves as a component of the structure of the eye lens (one of the crystallins) in
some animals.

• 

An ontology should only represent the terms or relationships that are absolutely necessary
(minimal ontological commitment). The lesser the ontological commitment, the greater the
number of purposes for which a particular ontology can be used. For instance, consider a

• 
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bio−ontology that is specifically designed to capture the structural protein motifs associated
with a gene and to capture the potential sites of interaction between proteins. This ontology
may be extremely useful in the screening of genes that might be coding for proteins that are
discovered to physically interact, but it may be less useful in determining whether or not a
particular protein is a known transcriptional factor for a particular gene. This latter
information might best be represented in a different formalism than the protein structure
representation.
There is a significant need for organism−specific ontologies, as genes do not always have
the same function across different species. A gene in the human genome may have a single
homolog in yeast, but the way in which it is regulated, the biological systems in which it
participates, and the nature of the additional structural complexity of its protein in the human
may be obscure without a species−specific bio−ontology.

• 

There also needs to be cross−organism ontologies because many genes have identical or
analogous function across organisms. If a finding is made in a yeast experiment, e.g., then
the ontology should inform the functional genomicist of the potential for finding a human
gene with the same function, if one is found with similar sequence homology. Conversely, a
gene in one species may have similar function to that of another nonhomologous gene in
another species. Understanding the parallels in the regulation and function of different genes
across species may provide important biological insights.

• 

5.1.1 Bio−ontology projects

We will now cover a few examples of successful bio−ontologies. For a more comprehensive and
current compendium of ontologies such as these, the reader is referred to issue no. 1 of Nucleic
Acids Research, of any recent year.

The Gene Ontology Consortium The Gene Ontology (GO) consortium is one of the more
high−profile efforts that has developed in response to the pressing need for a unifying framework.
As summarized by Ashburner et al. [13], the goal of the GO consortium is to provide a controlled
vocabulary for the description of three independent ontologies:

A description of molecular function. This describes the biochemical activity of the entity such
as whether it is a transcriptional factor, a transporter, or an enzyme, without making any
further commitments as to where the functions occur or whether the function occurs as part
of a larger biochemical process.

1. 

The cellular component within which gene products are located. This provides a localization
of a gene product's molecular function, such as the ribosome, the nucleosome, or
mitochondrion. Localization can help determine whether a purported function could occur
through direct physical interaction between gene products or as a result of an indirect
mechanism.

2. 

The biological process implemented by the gene products. Biological process refers to a
higher−order process, such as pyrimidime metabolism, protein translation, or signal
transduction.

3. 

The goal is to allow queries across databases using GO terms providing linkage of biological
information within and across species. The three ontology domains are presented in figures 5.1, 5.2,
and 5.3.
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Figure 5.1: The Molecular Function Ontology of GO. (From Ashburner et al. [13].)

Figure 5.2: The Cellular Component Ontology of GO. (From Ashburner et al. [13].)
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Figure 5.3: The Biological Process Ontology of GO. (From Ashburner et al. [13].)
These three ontologies are a result of a practical consensus of the kinds of distinctions that are
important at present in functional genomics. If the GO consortium efforts were to populate this form
of annotation across all genes for all sequenced organisms, this would be an invaluable resource
even though the ontology is of so little commitment that it may not enable several categories of
useful inferences. Examples of the latter include causal transitivity, temporal ordering, assertion of
disjoint subconcepts, and many more. Representations which might support these more elaborate
inferences are discussed in section 5.1.2. Again, there are some significant trade−offs in using
ontologies of much more ontological commitment and expressivity (see section 5.2). Despite the
limitations of the simple ontologies of GO, early efforts to annotate the organismal genomes using
this infrastructure appear very promising, notably the GO annotations in the LocusLink site of the
National Center for Biotechnology Information (NCBI).[1]

Kyoto Encyclopedia of Genes and Genomes One of the more comprehensive attempts to
describe the molecular and functional biological knowledge (all the way down to the detail of
interacting molecules) for all known genes is the Kyoto Encyclopedia of Genes and Genomes
(KEGG).[2] Rather than generating annotations per gene, KEGG attempts to curate and elaborate
on metabolic pathways, large molecular assemblies, and regulatory pathways. These larger
abstractions are invaluable to biological researchers and allow the rapid identification of how a gene
fits into cellular physiology. The KEGG ontology has five components:

Pathways with a corresponding graphic pathway map1. 
Ortholog groups, which represent highly conserved functional groups annotated by the
genes belonging to these groups across species

2. 

Molecular catalogs providing functional annotation of proteins, RNA, and small molecules3. 
Genome maps, which mirror much of the positional information at the NCBI4. 
Gene catalogs which have similar content to the Molecular Function Ontology of GO5. 

The richness and utility of the KEGG ontology can be seen in figure 5.4 which provides a snapshot
of one pathway maintained in its Pathways ontology. It documents our increasingly complex state of
knowledge about the genetic regulation of programmed cell death—apoptosis.
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Figure 5.4: The KEGG representation for apoptosis.
5.1.2 Advanced knowledge representation systems for bio−ontology

The AI community has developed a set of tool kits for large and highly portable ontologies over the
past two decades. It has not escaped that community's notice that the bio−ontologies developed to
date do not exceed the representational capabilities of extant knowledge representation languages.
In particular, languages such as Ontolingua [142] and the Ontology Mark−up Language/Conceptual
Knowledge Mark−up Language (OML/CKML) [131] have been evaluated for their ability to represent
biological knowledge and specifically functional genomic relationships. Ontolingua is a spin−off of
the Knowledge Interchange Format (KIF) and is a result of research funded by the Advanced
Defense Research Project Agency Knowledge Sharing Effort [137] targeted to support knowledge
re−use in ontology building efforts, a target shared by the bioinformatics community. The
OML/CKML effort has been led by Washington State University. These two representation
languages have similar capabilities as described in a report by McEntire et al. [131], although at this
time, the latter has a more compatible syntax with other meta−data languages through its use of
eXtensible Mark−up Language (XML). The reader is referred to [131] for a description of the issues
that had to be addressed when representing existing genomic knowledge bases.

Another knowledge representation system that has been useful in the bio−medical domain is
PROTÉGÉ, designed by Mark Musen at Stanford. In practice, none of these more advanced
knowledge representations has had nearly the impact and usage of the simple ontologies such as
that of GO or Proteome.[3] Part of the reason is that the need for any kind of functional annotation is
so dire that the capabilities of the advanced knowledge representations (e.g., automated inferences)
are not a priority and therefore unnecessary overhead when applying them over tens of thousands
of genes. It is also the case that even though these advanced representations have significant
expressive power, they remain fundamentally limited as described below. We wish to emphasize
this point because it is only through the implementation of bio−ontologies with greater expressive
power that many of the properties desired for such ontologies can be achieved. The alternative is
the creation of a multiplicity of special−purpose, limited expressivity representations that can only be
made interoperable with significant effort and without guarantees of semantic or computational
soundness.

[1]http://www.ncbi.nlm.nih.gov/LocusLink/.
[2]http://www.genome.ad.jp/kegg/kegg2.html.
[3]http://www.proteome.com/.
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5.2 Expressivity versus Computability

Since the 1980s, it has been recognized that there is a natural trade−off between the expressivity of
a representation used for an ontology and its computability. In an illuminating paper by Haimowitz et
al. [82], an evaluation was made of the adequacy of a formal description language—NIKL—to
represent medical concepts used in a physiological diagnostic program. The authors of this paper
described the requirements of a knowledge representation language to include the following
desiderata:

The system should have precise semantics, either based on the semantics of first order
predicate calculus, or having at least comparable precision.

• 

The knowledge representation should automatically provide logical inferences. This is what
sets a knowledge representation apart from a conventional database. It can answer
questions that go beyond what was explicitly told to the system.

• 

It should include some form of taxonomical inheritance of characteristics by more
specialized concepts from more general ones. Variations on the inheritance mechanism
include whether it is a pure tree (only one parent or generalization for each concept) or more
general graph (multiple potential generalizations of each concept). For example, an ontology
could represent the fact that a protein can be both part of a signal transduction pathway and
a transcriptional factor. Some inheritance mechanisms allow for exceptions and others do
not (e.g., although most RNA molecules code for proteins, some do not.).

• 

The inference mechanism should be sound and complete; i.e., it should derive no false
conclusions from true knowledge and guarantee that all true conclusions within the class
automatically promised will in fact be made.

• 

Whatever automatic inference is provided by the representation system itself should be
efficient.

• 

Because of the requirements of soundness, completeness, and efficiency, the expressive
power (the kinds of things that can be said with it and inferred in the knowledge
representation) should be limited to avoid the representation of undecidable or "NP−hard"
concepts.

• 

These desiderata apply to all the existing bio−ontologies and, therefore, the limitations that
Haimowitz et al. found in their evaluation are likely to hold in the construction of bio−ontologies.
Among the troublesome aspects of applying NIKL to the medical domain, Haimowitz et al. found the
representation to be inadequate to capture spatial relationships so that, e.g., the transitivity of the
part−whole or contained relationships was not automatically preserved. Furthermore, causation has
a variety of flavors (e.g., a gene may be permissive for a particular process, or a gene product may
be necessary but not sufficient for that process, or a gene product might be necessary and
sufficient) and these could not easily or accurately be represented in NIKL. Also, the transitivity
relationships that would then be expected of a causal representation were not suitably automatically
inferred. Similarly, in the temporal representation of the different phases of a process, the
dependencies of overlapping phases of a process were not adequately captured. These limitations
would certainly create problems for representing large numbers of cellular processes germane to
functional genomics.

Subsequently, several special−purpose representations were developed to create ontologies that
met the list of desiderata listed above. These specialized knowledge representations pertained to
temporal reasoning or spatial reasoning or causality. A few of them had limited capabilities across
all of these aspects. None of the current bio−ontologies are represented in languages as rich as
these efforts dating back to the 1980s. The implication is that, for our foreseeable future, the
expressivity that can be reasonably expected from bio−ontological representation languages is
going to be limited and we will not be able to express all the kinds of relationships that a biologist
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wishes to assert. Nonetheless, for the reasons noted at the beginning of this section, the utility of
having even a relatively inexpressive set of attributes for concepts associated with genes and gene
interactions would be immense. The alternative is manual review of the unstructured literature, and
that is unlikely to be a scalable solution without further efforts in natural language−based information
retrieval techniques. As we have stated before, notwithstanding their limitations, these
bio−ontologies are likely to grow in size and in use. Indeed there are several commercial efforts now
that have implemented very low ontological commitment ontologies such as that of Proteome in
which very simple ontologies have been populated by hundreds of knowledge workers to supply the
biotechnology industry with annotations for the genome. Similar efforts are under way by the other
gene discovery groups and companies in this area such as Celera, Curagen, and Rosetta.

A comparison of the various ontologies mentioned in this section is shown in table 5.1.

Table 5.1: Overview of representative ontology technologies. "Consumer report" of instances of
some of the dominant ontologies used to represent genmic knowledge. Some of the instances are
general purpose ontology building tools (e.g., Ontolingua) and others are the sole instance of a
particular representational technology (e.g KEGG).

Ontology Defines a nomenclature
for
genomics/bioinformatics

Specialization Expressivity Interoperability /
Integration

Human
expertise
required

Ontolingua Multipurpose tool; no
nomenclature included
or recommended. User
community can define
the nomenclature of
choice.

Support of
multiple
inheritance
allows
representation
of sme of the
most complex
dependencies
in genomics

Broad and
richly typed
representation
with several
add−on
packages for
specialized
domains (e.g.
temporal and
spatial
reasoning).
Can assert
disjountness,
negation, etc.
This
expressivity
unsurprisingly
is coupled with
minimal
reasoning
support.

Several tools from
within the Artificial
Intelligence
community are
interoparable. Less
so with standard
WWW tools.

Considerable
knowledge
acquistion
required for
proper use.

GO Specifies a controlled
vocabulary for GO
descriptions.

Limited
specialization
without formal
Inheritance
mechanisms.

Limited
expressivity
(no causal
transitivity,
temporal
ordering,
assertion of
disjoint
subconcepts.)

Tightly integrated
into the suite of
databases and tools
of the NCBI.

Minimal
ontological
commitment
and
restricted
expressivity
enable easy
adoption and
use.

KEGG
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Specifies standard
nomenclature for each
entity (e.g., EC for
enzymes).

Very limited
form of
specialization
without
inheritance.

Limited
expressivity
(no assertion
of disjoint
subconcepts).
However, the
extensive use
of binary
relations
allows
primitive
interference of
causal
transitivity and
representation
of pathways.

Intergrated with
other pathway
representations
(e.g., WIT[a]).

Minimal
ontological
commitment
and
restricted
expressivity
enable easy
adoption and
use.

OML/CKML Multipurpose tool; no
nomenclature included
or recommended. User
community can define
the nomenclature of
choice.

Supports
multiple
inheritance
and automated
subsumption,
i.e., inference
from the
logical
constraints
defined in the
term of
concept C’
logically imply
those of the
more general
concept C.

Missing some
of Ontolingua's
constructs
(e.g.,
collections) but
relatively high
expressivity.

Uses XML as syntax
and therefore easily
interoperates at
least at the syntactic
level with several
e−commerce/WWW
tools. As yet,
though, few
instances of
integration with other
tools.

Significant
experience
required but
XML syntax
brings it
quicker to
wider
community
of
developers.
However,
still a work in
progress.

[a]http://www.wit.mcs.anl.gov/WIT/

5.3 Ontology versus Data Model versus Nomenclature

In the sections below, we describe the nomenclatures and data models that are used to represent
genomic data. Often, however, data models and nomenclatures are described as being ontologies.
In some very abstract sense, a data model is an ontology with very little ontological commitment
(and little in the way of automated inferential mechanisms), and a nomenclature has even less. A
nomenclature simply refers to a method of naming or identifying concepts. From the ontological
perspective, a nomenclature allows the representation by name of the concepts in an ontology
(whether implicit or explicit) without describing the relationships between these various concepts.

A data model defines a hierarchy of classes, attributes and relationships of those attributes without
providing the expressivity based on first−order logic. It also does not have the other inferential
capabilities that we have mentioned in the desiderata of section 5.2 and the description of the NIKL
effort of Haimowitz et al. For instance, a data model describing the components of a microarray (see
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section 5.4) might be useful for creating a shared structure for storing the results of a microarray
experiment. This data structure does confer the capability to provide even simple inferential
relationships such as negation or disjunction. However, a data model would be awkward to state
that a gene can code for a transfer RNA or an rRNA or a protein but only two of these three classes.
Certainly, elaborate data structures can be developed to capture representational detail, but for
every disjunction or exception that the ontology architect wishes to add, the complexity of the data
model will grow rapidly. That is, while the data model is necessary to provide a structure in which to
maintain the properties of the concepts, it is no substitute for the descriptive power and inferential
power of the kind of ontologies previously mentioned. This may appear obvious, but at the time of
this writing there are several efforts which claim to be ontologies, but which are in fact no more than
glorified nomenclatures and data models.

5.3.1 Exploiting the explicit and implicit ontologies of the biomedical
literature

Instead of devising new ontologies specifically for use in functional genomics, others have taken
advantage of the existing very low ontological commitment representations used to maintain the
biomedical literature. The terminology structures of MEDLINE, the Medical Subject Headings
(MeSH), are an outgrowth of the original paper−based Index Medicus. As illustrated in figure 5.5
below, MEDLINE's key words are organized into major headings within a few fixed hierarchies or
trees (e.g., physical findings, diseases, chemicals). This limited taxonomical structure makes it
evident that MeSH has limited expressive capabilities. It has the immense benefit of having been
carefully curated by extremely well trained librarians over decades, and therefore it represents an
invaluable depository of annotation of biomedical knowledge. It includes approximately 20,000
major headings (and many more synonyms corresponding to the concepts represented by these
headings) and 105,000 chemical names. Each article encoded in MEDLINE (and therefore
accessible via PUBMED[4]) has on average 10 MeSH annotations.
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Figure 5.5: The MeSH terminology hierarchy. A portion of the MeSH terminology hierarchy starting
at the top level and showing the first level of detail at the disease subhierarchy. The entire hierarchy
may be browsed at http://www.nlm.nih.gov/mesh/MBrowser.html.
The MeSH nomenclature could be taken advantage of in functional genomics. For example, the
work of Dan Masys et al. in the HAPI [127] project processes microarray data and clusters from

173



functional genomics analyses. The genes are looked up and the corresponding MeSH terms are
found in databases maintained by the NCBI (see the nomenclature section 5.5 below). The
MEDLINE structure associated with each publication is then used to categorize the genes found in
the clusters, as shown in figure 5.6.[5] That is, in addition to finding the publications corresponding to
each gene, the MeSH hierarchy permits the identification of broader functional and pathological
categories. In the instance of the clusters of genes characterizing acute myelogenous leukemia and
acute lymphocytic leukemia [78], this demonstrates that the genes predictive of these leukemias are
also known to be involved in polycystic kidney disease, inherited immunodeficiencies, and multiple
sclerosis. Many of these relationships were only obtainable through the MeSH hierarchy and not
directly by searching using only the gene names.
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Figure 5.6: Transforming a cluster of genes into an annotated structure automatically using
MEDLINE. Summary of concept hierarchy matches with the MeSH hierarchy terms for genes
described by Golub et al. [78] that fell into the acute lymphoblastic leukemia (ALL) cluster.
Alternatively, the textual content of the biomedical literature itself has an implicit (if muddy)
ontological structure which can be exploited. That this can be done without solving the natural
language challenge is illustrated by the work of Altman and Raychaudhuri [6]. These authors
represented each publication as a word vector of the titles and abstracts, with each vector encoding
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the frequency of those words for those articles. Using these vectors they were able to apply the
same clustering techniques[6] used to find the proximity of gene expression patterns to find how the
publications clustered. It may be that in the future, combinations of simple ontologies and a
statistical analysis of the content of publications will allow efficient mining of the immense
biomedical literature for genomicists seeking to obtain the meaning of the gene or protein patterns
they have observed.

[4]http://www.ncbi.nlm.nih.gov/.
[5]A similar functionality is also provided by the PubGene program at http://www.pubgene.org/.
[6]With the word frequency used in the same way as a gene expression value.

5.4 Data Model Introduction

Data models are the logical structures used to represent a collection of entities and their underlying
one−to−one, one−to−many, and many−to−many relationships. The main motivations for creating
data models is usually to be able to implement them within a database management system,
usually as a relational database management system (e.g., Oracle, SQL Server, Sybase, MySQL,
etc.). As the relational calculus [48] is based on the first−order predicate calculus, it is possible,
although unrewarding, to express a wide range of formal relationships within the data model. The
reasons for the unwieldy nature of such an effort are articulated in the prior section. Presently, in the
domain of bioinformatics and functional genomics, the most relevant heuristic distinction between
bio−ontologies and data models is that bio−ontologies are usually developed in order to provide a
shareable framework to describe attributes of genes, whereas data models at this time are mostly
developed to store the measurements of genomic systems. For DNA sequences, this corresponds
to the GenBank data model and for the domain of microarrays, it corresponds to a way of organizing
the pertinent values obtained on measurement of a microarray hybridization experiment.

Among the goals often stated for the development of standardized microarray data models is the
capability to allow researchers across multiple laboratories to be able to take advantage of the
precious RNA samples obtained from various sources and hybridized to microarrays in several,
initially unrelated, experiments. Ideally, these researchers should be able to perform aggregate
analyses across all these various experiments independent of the provenance or manufacture of
each of the microarray systems. In this way, we may create a shared set of repositories of
expression data that might reveal subtle gene interactions across a larger sample than would be
observable within a single institution's data set.

Unfortunately, expression measurements are human artifacts rather than ground "truths" in
biology.[7] A consequence of this fact is that that there are many such artifacts. There are several
microarray measurement systems in use, and many more under development, such that
convergence upon a particular data model involves the arduous task of obtaining a sufficiently
general representation of all the measurement types across different microarray systems, while at
the same time providing sufficient specificity for each measurement system so as to avoid loss of
detail of a particular study. Unfortunately, a large part of this specificity reflects differences in the
measurement techniques of a particular microarray platform that result in nonlinear relationships
with the results from other platforms. The implication of this is that even if the data models are
shared across microarray platforms, the results encoded in these shared data models may not be
directly comparable.

Let us be a little bit more explicit regarding the challenge of a standardized data model for
microarray experiments results. Unlike DNA sequences, which are by nature digital and whose
interpretation should be independent of the modality by which the sequence was acquired,
expression data are analog signals and their value and interpretation are very much dependent on
the technology used to obtain that value. Consider just two of the technologies used to measure
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expression: photolithographically constructed oligonucleotide microarrays with several probes per
gene hybridized against a single color−stained sample, and robotically spotted microarrays with one
probe per gene hybridized against two samples each colored with a different dye. In the first case,
the expression level is reported as a function of a trimmed mean of intensities, each probing for a
particular part of a gene, and the "average difference" between intensities of oligonucleotides that
perfectly match against that gene part, and oligonucleotides that have a central base mismatch with
that same part. In the second case, the gene expression level is measured as a ratio of
hybridization of one specific cDNA from one sample against the cDNA from another sample.
Although there is some relationship between the two measurements, it is not clear or empirically
determined what that relationship is. For example, two−dye microarray measurements are directly
related to the second or control sample used, whereas single−dye oligonucleotide microarray
measurements are in theory an absolute expression level.

As a result, there are at least as many microarray expression data models available as there are
microarray expression technologies and, in fact, considerably more. At the time of this writing, there
has yet to be any consolidation of these different competing standards into a single one, although
this is likely to happen in the near future. However, in the absence of such a consensus, we point
out the most promising and successful of these efforts. Not all these efforts in data modeling are
sufficiently general at the time of this writing to encompass all the current microarray gene profiling
technologies. We will note this as we describe the current major candidates for standardized data
models.

Gene Expression Omnibus (GEO) The NCBI has been developing the GEO data model to support
the construction of a gene expression repository with the same inspiration and goals that were
originally targeted for the GenBank repository for DNA sequence. The goal of GEO is to support
spotted microarray technology, oligonucleotide microarray technology, hybridization filters, and
Serial Analysis of Gene Expression (SAGE) data. The entities used in GEO are shown in figure 5.7
and can be accessed on−line.[8] Examination of this figure reveals that, currently, Affymetrix style
files are poorly supported, whereas the two−dye spotted microarray data type is better supported.

Figure 5.7: A subset of the definition of sample in the GEO. At the time of this writing, the sample
definition in the GEO does not appear to support the full complexity of oligonucleotide high−density
microarrays.
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The Gene Expression Mark−Up Language (GEML) GEML syntax is based on XML. GEML was
originally developed by Rosetta Inpharmatics, and subsequently, several other public and private
institutions have become involved, such as Agilent Technologies and Nature America, Inc. Details
on GEML can be found at http://www.geml.org/.

GEML starts with an XML format, as this is the most widely used meta−data syntax developed. XML
is maintained by the World Wide Web consortium to define general−purpose mark−up languages,
and is now used widely as the interchange format for a variety of electronic commerce functions and
scientific interchange efforts. There is a multiplicity of tools for generating, parsing, and displaying
XML content and consequently GEML leverages this existing effort. The goal of GEML is illustrated
in figure 5.8 (taken from their website). At the top level are the various types of microarray
measurement systems and in the middle is the GEML lingua franca into which all the values
measurement systems are translated. Below the GEML layer are shown several applications that
work with microarray data as abstracted into a standardized format in GEML. This architecture is
similar to many other three−tiered architectures where there is a common data model abstracting
away the heterogeneity and complexity of the various databases that it accesses. In theory, a
programmer for microarray analysis software would only have to understand the GEML Document
Type Definition (DTD) to write applications that worked with the results of measurements on all
microarray platforms.

Figure 5.8: The abstraction layers of the Gene Expression Mark−up Language (GEML).
The GEML specification takes advantage of the DTD file. A DTD is the actual specification of the
formal data model that any XML message that hews to that DTD must follow. DTD specifications
are the World Wide Web consortium's prescribed mechanism for defining application−specific data
models, and many industries (e.g., finance and imaging) are in the process of defining a consensus
DTD for their own applications.[9] GEML specifies two DTDs: a pattern DTD, which describes the
genes reported on a chip layout, and the profile DTD, which contains expression data, treatment,
and hybridization information. That is, the latter DTD describes the experimental conditions and the
resultant values. figure 5.9 shows the pattern DTD that has been quoted verbatim from the GEML
site. Examination of this DTD reveals that the encoding of the experimental results of single or
two−dye stained samples hybridized against cDNA microarrays would be fairly straightforward,
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whereas encoding the 20 probe values that constitute a single probe set on an oligonucleotide
microarray might be challenging and require some contortions in the way the data is squeezed into
those existing attribute lists.

Figure 5.9: The GEML pattern document type description.
Microarray Gene Expression Database Group (MGED) MGED was developed in recognition of
the need for standardization of microarray data models. It is an open discussion group that originally
held its meetings in the United Kingdom, and subsequently has held two international meetings.[10]

The most notable output of the MGED group, which is constituted of multiple private and public
institutions, is the Microarray Mark−up Language (MAML). The MAML DTD is shown in figure 5.10.
The MAML DTD is sufficiently comprehensive that even at the time of this writing, it appears to
cover all the currently available microarray technologies without requiring each site implementing
the MAML database to put their own data through too many contortions in order to adhere to the
data model. In particular, the abstract way in which a composite element has been defined in this
DTD allows for the representation of a wide range of physicochemical means for assessing gene
expression.
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Figure 5.10: The MAML pattern document type description. Shown are three fragments of the
MAML DTD. The first column demonstrates the generic description of a data set creator. The
second column demonstrates the capability of maml to support composite expression
measurements and analyses of the sort found on the Affymetrix platform.
Attempting a consensus model Obviously, if there is such a wide variety of standard microarray
models, there is no standard. Without a single standard, combining expression data across
microarray experiments is arduous, if not impossible. Fortunately, the Object Management Group
(OMG) appears to be creating a common ground where proponents of these various data models
will be able to begin to reconcile their various proposals and create a consensus data model.
Although this consensus data model has not yet been finalized, the OMG has already incorporated
some of the proposals that we listed previously. As the OMG has successfully created agreed−upon
standardized data models in many different application domains outside biology, there is some
reason to hope that they will be similarly successful in this domain. For the latest information on the
OMG efforts regarding a standardized microarray data model, we will refer the reader to the
following website: http://www.geml.org/omg.htm.

In addition to the OMG efforts, there is the Interoperable Informatics Infrastructure (I3C), a group
that is tasked to produce technical recommendations for the interchange of data with the goal of
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creating practicable solutions.[11] The membership of I3C is constituted of 60 companies and
organizations committed to addressing the balkanization of data modeling efforts illustrated by table
5.2.

Table 5.2: List of freely available data models and databases for microarrays.

Data model or database URL

Affymetrix Analysis Data Model
(previously Genetic Analysis
Technology Consortium)

http://www.affymetrix.com/support/aadm/aadm.html

Another Microarray Database http://www.microarrays.org/software.html
ArrayDB http://www.genome.nhgri.nih.gov/arraydb
ArrayExpress http://www.ebi.ac.uk/arrayexpress/Design/design.html
ExpressDB http://www.twod.med.harvard.edu/ExpressDB
GeneX http://www.ncgr.org/research/genex
MicroArray Database http://www.pompous.swmed.edu/exptbio/microarrays/mad
Standford Microarray Database http://www.genome−www4.standford.edu/MicroArray/SMD

Again, it is interesting to note how much more difficult it has been to arrive at a consensus model for
microarray expression measurements than it took to create a standard data model for genetic
sequences in GenBank. The reason, as stated before, is that gene expression measurement is an
analog measurement rather than the digital measurement of DNA sequence and therefore the
measurements can only be understood with respect to a particular measurement system, a human
artifact. The goal of the standardized microarray data model can only be realized once a common
set of abstractions can be reliably found across all these different measurement technologies and
artifacts.

[7]That is, this compares with the case of DNA sequence, where the way to represent the ordering of
a particular sequence of nucleotides is, at least in theory, independent of the measurement system.
[8]http://www.ncbi.nlm.nih.gov/geo/info/fields.pgi.
[9]In the latest iteration of specifications for XML document specifications, the XML schema has
superseded the DTD, although there is sufficient overlap to allow DTDs to be easily converted into
XML schemas.
[10]http://www.mged.org/.
[11]http://www.i3c.org./

5.5 Nomenclature

The issuing of consistent names to genes is an apparently mundane chore. Unfortunately, at this
time, its importance may exceed that of shared data models and ontologies for the purposes of the
immediate progress in our functional genomics efforts. Why might this be?

First, we want to make sure that we compare the behavior of the same genes and their properties
across all experiments. When a microarray manufacturer reports that the nth element of its array
interrogates the expression of a particular gene, the following questions should be asked: Which
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particular polymorphism (s) of that gene, which alternative splicing product(s), and which other
gene(s) are being reported on?

Consequently, the nomenclature (i.e., naming scheme) used to identify gene expression
measurements on microarrays has to be able to capture the increasingly polymorphic definition of
genes. As we learn more about single nucleotide polymorphisms (SNPs), alternate splicing
products, pseudogenes, frame−shift mutations, and other variations in just the primary structure of
the genes and the proteins they produce, a nomenclature has to be able to distinguish between
these various forms of the same gene and yet group them as belonging to the same coding gene.
This goes beyond the UniGene[12] effort which attempts to cluster known experimentally derived
sequences into a cluster with a single consensus sequence, ideally corresponding to a single
particular gene.

The task of finding a standardized and universal nomenclature for each gener is just the tip of the
iceberg of a recurrent challenge in microarray technology: the task of linking a spot on a microarray
to a specific gene or expressed sequence tag (EST). This is challenging in both mundane technical
ways and in deep fundamental ways. The mundane ways in which it is challenging is that if one
does not have the exact sequence for each microarray spot, at the very least, one has to obtain the
correct sequence that each spot on the microarray was engineered to represent. For instance, on a
spotted cDNA microarray, one has to determine the gene sequence of the clone used for each spot.
With an oligonucleotide microarray, one has to determine from the manufacturer what sequence
each probe set was designed to correspond to. In cDNA microarrays, these probes are typically
linked to an IMAGE (see the description of the IMAGE consortium on p. 245) sequence ID. These
are typically issued with the cDNA microarrays or with the probes that are spotted onto the
microarray. Unfortunately, there has been a high error rate in many of the cDNA clones obtained
from various manufacturers and so although the name mapping may be relatively straightforward, it
may not actually represent what is being hybridized. Consequently, researchers may have to
resequence a clone if they want to verify that the probe is assaying for the presence of the gene
they think it is. The challenge is somewhat different with proprietary oligonucleotide microarray
manufacturers, where the manufacturer's catalog states what gene each probe set has been
engineered to hybridize to but the actual oligonucleotide sequences themselves are unknown.[13]

This is problematic for several reasons.

The gene sequence that the probe set may be engineered for may be a fusion gene, i.e., an
abnormal composite of two different genes. Consequently, since we do not know which part
of the fusion gene is actually being represented by the probe set, it is unclear whether that
probe set measures just the presence of the fusion gene transcript or whether it can also
measure the presence of either one of the constituent genes separately.

• 

Furthermore, at the time of this writing, some oligonucleotides probe sets are designed
against large sections of the genome such as a cosmid (see glossary, p. 277). Knowing the
genomic sequence does not provide very much information about which gene in particular is
being expressed from that region of the genome. If the specific oligonucleotides were made
public, then one could perform a BLAST search to find which specific gene in that region the
oligonucleotides corresponded to.

• 

As the genome efforts in the human, mouse, and other species increase in accuracy and
completeness, the mapping between the microarray oligonucleotides and the genes they
correspond to is likely to improve. Specifically, as we gain more knowledge of polymorphic
variants of genes and their alternate splicing products, the investigator will be able to verify
which particular variant a probe set is measuring. However, in the absence of such
information, researchers cannot take advantage of increased knowledge of the genomic
sequences to provide a more accurate labeling of the intensities that they are measuring on
the microarrays.

• 

182



A related problem occurs with oligonucleotide microarrays where sequences that were
thought to be part of one gene at one time are found to be components of other genes as
the UniGene (see p. 244) clustering become more refined. Practically, this means that in one
generation of Affymetrix microarrays, a probe set is said to correspond to one gene,
whereas in another generation it may correspond to two or more genes based on the new
assignments of the particular GenBank subsequences to different genes. In the absence of
knowledge of the exact oligonucleotide sequences, or in the absence of a version history of
Affymetrix accession numbers, the analysis of oligonucleotide microarray data, particularly
across generations of microarrays, becomes problematic.

• 

Occasionally, manufacturers of oligonucletide sequences just make mistakes in their design
process and engineer oligonucleotides that do not interrogate for the expression levels of the
specified genes. The most recent and notorious example of such an error was in the design
of Affymetrix oligonucleotide microarrays for murine systems that was unreported for
months. If these sequences had been made public, then the error would likely have been
discovered much earlier.

• 

Pragmatically then, in the year 2002, some relatively laborious cross−indexing of terms across
nomenclatures needs to be done in order to first determine which gene(s) a particular spot on a
microarray was engineered to assay, and secondarily, to compare results across different
microarrays. In practice, this means looking up in a table provided by each microarray manufacturer
each accession number corresponding to each probe or probe set on a microarray, whether it be a
tentative consensus (TC) number from the Institute for Genomic Research (TIGR) organization, a
GenBank accession number, a UniGene accession number, an IMAGE clone ID, or some other
accessioning scheme, finding the representative genetic sequence corresponding to that probe or
probe set, and then running a Basic Local Alignment SearchTool (BLAST) search against one of the
standardized nomenclatures such as LocusLink (see p. 243), if it is a gene with a known function, or
UniGene, if a more comprehensive search is desired. Because this lookup function has to be done
hundreds of times per analysis due to the large number of genes present, it requires one to write a
script that submits the appropriate sequences to a BLAST program. The submission can be over
the Internet using the batch version of BLAST at the NCBI. For better performance, if one has
sufficient storage space locally, the entire GenBank repository and BLAST programs can be
downloaded and run locally, using instructions at the NCBI. It is prudent to re−run these scripts on a
regular basis as the UniGene and LocusLink databases are frequently updated.

An alternative approach is to develop the infrastructure to track each microarray probe or probe set
and automatically determine the latest meanings for each. We have developed such a system that
automatically parses the latest tables converting GenBank to UniGene, and UniGene to LocusLink,
as well as the content files for these databases. Using these tables, one can then connect each of
these references to the original publicly available accession numbers provided by the microarray
manufacturers. The advantages of this approach are that:

One can immediately find official names and symbols for probes and probe sets, as well as
known synonyms.

• 

One can take the opposite route and search for probes and probe sets by gene meaning or
other characteristics. For instance, if one has prior information that a gene on human
chromosome 4 is associated with a particular phenotype, one can optimize functional
genomics analysis by restricting to only those genes known to be in the appropriate location.
One could also restrict analysis by protein domain, such as restricting to only those genes
containing a zinc finger or DNA binding domain.

• 

One can find and search by functional categorization, such as a term from GO or a disease
from Online Mendelian Inheritance in Man (OMIM).

• 

Because UniGene is essentially formed by applying BLAST to GenBank entries, it spares• 
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one from performing those BLAST operations.
The tables can be updated regularly automatically.• 

We maintain a website at http://www.unchip.org/ which uses these tables and allows the translation
of a microarray−specific accession number (currently mostly Affymetrix) to one of the more globally
used nomenclatures described below. A similar service is available for Affymetrix customers[14]. A
commercial product offering similar, but more broadly applicable functionality is called GeneSpider
and may be available soon from Silicon Genetics.

5.5.1 The unique gene identifier

Given the aforementioned desiderata that motivate the need for a standard nomenclature for genes,
the quest for such a standardized nomenclature has generated widespread international efforts.
There are several candidate nomenclatures, the most popular and useful of which we summarize
here. Optimally, these nomenclatures should capture polymorphisms, splice variants, and mutations
of the genes as they appear in one species and in their orthologs in all other sequenced genomes of
other organisms. We list some of the more popular nomenclatures used for microarray experiments.
In practice, microarray repositories will use several nomenclatures to reference the measurements
made in gene expression experiments. For a more comprehensive and current compendium of
nomenclatures such as these, the reader is referred to issue no. 1 of Nucleic Acids Research, of
any recent year.

LocusLink (http://www.ncbi.nlm.nih.gov/locuslink/) Perhaps the most extensively curated and
possibly the broadest nomenclature is maintained through the LocusLink database [145]. LocusLink
identifiers are stable, in that they are designed not to change over time, and are genome
independent. There are other databases which have a much larger set of expressed sequence tags
(see glossary, p. 277) or putative genes, but for which either the complete coding region is not
known, or for which the function of the gene product is unknown. The curated nature of LocusLink is
important because, unlike GenBank records, which are under the full editorial control of only those
who submitted the sequence, the sequences and annotations in LocusLink are under an extended
and distributed editorial process.

Broadly speaking, the LocusLink record is comprised of three components. The first is a stable
unique identifier called the locus ID. The second component is the reference sequence which is
obtained from the REFSEQ[15] database, which in turn is seeded by a GenBank source coding
sequence. This reference sequence is left as provisional until the full length is obtained according to
the editorial process. The third component includes all the annotations such as the completeness
indicator for the gene (indicating that the entire coding component of the gene is complete),
accession numbers providing links to a protein record, links to the OMIM,[16] links to other databases
such as UniGene and DBSNP, and an extremely useful English language summary that describes
the gene. Of note, LocusLink is involved in an active collaboration with the Human Gene
Nomenclature Committee (HGNC)[17] to provide an overall unifying international standard. Most
recently, LocusLink also maintains links to functional annotation databases such as those supplied
by Proteome[18] and publicly maintained ontologies such as GO.

It appears likely that LocusLink will continue to be the locus for much annotation of organismal
genomes and the provider of stable identifiers for their genes.

UniGene (http://www.ncbi.nlm.nih.gov/UniGene/) Although LocusLink provides the most stable
identifier for known genes, or at least those for those which at least one function is at least
presumed, at this early stage of the discipline of functional genomics, the majority of genes do not
have any known function.[19] For this reason, other related databases are useful. Chief among these
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may be the UniGene system at the NCBI [28]. UniGene attempts to be comprehensive; to catalog
all the characterized genes as well as hundreds of thousands of uncharacterized and novel
expressed sequence tags, while attempting to reduce the redundancy inherent in those individual
catalogs. The content of each UniGene record includes a set of sequences with GenBank identifiers
that have been clustered such that they are presumed to correspond to a single specific gene. As
this clustering is done mostly automatically, and the clustering procedures have evolved over time
and been augmented with more data, the UniGene clusters are not guaranteed to be stable, unlike
LocusLink identifiers. The strength of UniGene is that it attempts to be comprehensive and includes
not only the GenBank accession numbers for sequences in each cluster but also known alternate
splicing variants. Currently, UniGene describes human, rat, cow, mouse, and zebra fish organisms.
Each UniGene record has a unique ID called a cluster ID. Because these cluster identifiers are
unstable, a cluster ID can be retired for a variety of reasons.

The sequences that congregate to a cluster might be found to be contaminated.• 
Two or more clusters may be joined to form a single cluster in which case the original cluster
IDs are retired.

• 

A cluster may be found to be composed of more than one gene and therefore must be split
into two or more clusters. Thus the original cluster ID has to be retired and new ones
generated for the subclusters.

• 

Because of this terminological instability most reports using the UniGene nomenclature will also
report the "build" (i.e., version) number from which the cluster IDs were drawn.

GenBank (http://www.ncbi.nlm.nih.gov/) An overview such as this would be incomplete without
mentioning GenBank, the public database of all known nucleotide and protein sequences from
which many of the other nomenclatures are derived [22]. At the time of this writing, GenBank
contains over 12 million annotated sequences and is growing at the rate of over 5 million sequences
per year. GenBank sequences are divided into divisions, roughly corresponding to taxonomy (e.g.,
bacteria, viruses, etc.) as well as for specific projects, such as ESTs, genome sequencing,
sequence−tagged sites, and others.

Each GenBank record contains taxonomic information regarding the organism from which the
sequence was obtained, bibliographical references, and biological features found within the
sequence. Each record has an accession number that is stable and unique; each entry is also
assigned a unique unstable GI number so that revisions may be tracked. Beyond this, very little
additional annotation is provided, given the low−commitment nature of this database.

GenBank is a member of the International Nucleotide Sequence Database Collaboration, including
the DNA Data Bank of Japan and the European Molecular Biology Laboratory, which defines
common ontologies for taxonomy and features allowing daily movement and translation of data
between these databases.

IMAGE (http://www.image.llnl.gov/) The Integrated Molecular Analysis of Genomes and their
Expression (IMAGE) consortium was formed to create, collect, and characterize cDNA libraries from
a variety of different tissues and was initially spearheaded by the efforts by the Washington
University Genome Sequencing Center and Merck & Co. [118]. Several microarray databases refer
directly to the IMAGE clone identifiers rather than to any one of the more precisely characterized
sequences described above. Those IMAGE cDNA clones that have been sequenced are available
in the dbEST database maintained at the NCBI.[20] Perhaps the best feature of the IMAGE clone
identifiers is that they refer to physical instances of these clones on the master plates from which
the clones are generated. In that sense, the clone identifiers are stable. However, considering that
some of the clones obtained from these master plates have been known to suffer contamination or
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have not been sequence−validated, they are not stable.

The Institute for Genomic Research (TIGR, http://www.tigr.org/) TIGR also maintains a fairly
extensive list of human and other organism nomenclatures. TIGR has its own consensus curation
and assembly process that it uses to maintain a number of databases for organisms, including
human, mouse, rat, zebra fish, rice, Arabidopsis, soy, tomato, maize, potato, cattle, and many
others. The nomenclature specific to TIGR is the tentative consensus sequence, or TC. TC clusters
are created by a process similar to UniGene by assembling ESTs into clusters based on sequence.
However, alternate splice forms are built into separate TC clusters, as opposed to UniGene, where
these are kept in the same cluster. Many manufacturers of microarrays refer to TIGR accession
numbers or TC identifiers in their descriptions of the probe sets or cDNA probes on their
microarrays. TIGR itself uses TC identifiers to create a useful set of mappings of orthologs across
all the species indexed in the TIGR database.

Enzyme nomenclature database The Nomenclature Committee of the International Union of
Biochemistry and Molecular Biology maintains a catalog of known enzymes and their functions.
Enzyme nomenclature is based on the reactions that are catalyzed, and not the genes that make up
the enzymes, or the protein structures of those enzymes. Thus, simple one−to−one translations
between Enzyme Commission (EC) numbers and GenBank or LocusLink accession numbers are
neither possible nor accurate. For example, the enzyme described by EC 1.1.1.27 (lactate
dehydrogenase, LDH) assists in the conversion of lactic acid to pyruvate. However, that enzyme is
made of four independently chosen subunits of two types, either LDHA (LocusLink 3939) or LDHB
(LocusLink 3945). Note that these genes have different LocusLink entries in other species, whereas
the enzyme function keeps the same EC accession number.

This nomenclature can be searched using the Expert Protein Analysis System maintained by the
Swiss Institute of Bioinformatics[21].

Other identifiers Other identifiers used on microarrays include the Expressed Gene Anatomy
Database identifiers[22], and the Munich Information Center for Protein Sequences Yeast Genome
Database[23]. In addition, other identifiers of which a functional genomicist should be aware include
Ensemble[24], the Genome Database[25], the Mouse Genome Database[26], the Saccharomyces
Genome Database[27], and the Database of Transcribed Sequences[28].

[12]http://www.ncbi.nlm.nih.gov/UniGene/.
[13]That is, they are kept as confidential proprietary information.
[14]http://www.netaffx.com/
[15]http://www.ncbi.nlm.nih.gov/LocusLink/refseq.html.
[16]http://www.ncbi.nlm.nih.gov/Omim.
[17]http://www.gene.ucl.ac.uk/nomenclature.
[18]http://www.proteome.com/.
[19]And a larger majority only have a few of their functions known.
[20]http://www.ncbi.nlm.nih.gov/dbEST.
[21]http://www.ca.expasy.org/enzyme/
[22]http://www.tigr.org/tdb/egad/egad.shtml
[23]http://www.mips.biochem.mpg.de/
[24]http://www.ensembl.org/
[25]http://www.gdb.org/
[26]http://www.informatics.jax.org/mgihome
[27]http://www.genome−www.stanford.edu/Saccharomyces
[28]http://www.allgenes.org/
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5.6 Postanalysis Challenges

5.6.1 Linking to downstream biological validation

When we introduced the functional genomics pipeline of figure 1.5 (see p. 17) we made it clear that
without biological validation, the hypothesis generation and test procedure for which the pipeline
was intended will be arrested. A small but important subtask of bridging the flow from computational
to biological validation is the assurance that the genes referred to in the analysis (e.g., the lists of
genes belonging to each cluster) should refer to the appropriate physical clone regardless of
whether the nomenclature used for analysis was GenBank, UniGene, TIGR, Stanford Yeast ORL
codes, or any other internal or local numbering schemes. Specifically, biological validation will
involve performing biological "wet bench" experiments, which may well depend on obtaining clones
of the genes identified in the analysis.

Thus, some degree of translation is necessary to follow up on the results. It has been our
experience that this process takes many fold longer than the actual bioinformatics analysis. Since
many of the genes or ESTs that appear on the lists after analysis are typically unknown, one can
argue that a bioinformatics analysis of microarrays is never actually complete. It may only be after
another week, month, or year, that another group may finally assign a meaning to one of those
unknown genes. Only after the analyst sees that result might a hypothesis be generated. Thus, an
infrastructure that periodically re−queries the accession numbers or genes to see if anything new is
known about each oligonucleotide, cDNA, or gene is necessary. Furthermore, appropriate analysts
should be informed when such an event happens. Such a system might be similar to how
PubCrawler operates on the biomedical literature [96].

Here we touch upon some of the conceptually shallow but pragmatically thorny challenges that face
the researchers as they attempt to make sense of the results of their data mining forays.

5.6.2 Problems in determining the results

Several problems can develop during the postanalysis interpretation of these results.

No genes BLAST to finding: Some microarray results may be given as accession numbers
for ESTs. Thus, to follow up these results, it is necessary to take the nucleotide sequence for
the EST and BLAST that sequence against GenBank or UniGene looking for a "full−length"
gene. In translating these accession numbers, however, there may be no gene that matches
strongly enough. This can happen because the full−length gene may not be known yet, or
due to inaccuracies in the EST consensus sequence. Gene findings with this problem may
not be able to be followed up.

• 

Many genes BLAST to finding: Sometimes, many full−length genes may be found for a
single EST, meaning the EST is nonspecific. At the time of the microarray construction, the
EST may have been thought to be specific for one gene, but with progress in sequencing,
this may no longer be true. To follow up these findings, many clones may need to be used in
biological experiments.

• 

EST is no longer unique: Often, microarrays may have been designed with a particular
sequence thought to be unique for a single gene, EST, or EST cluster. With progress in
sequencing, however, it may be later realized that what was thought to be a single EST or
gene cluster actually represents two or more unique clusters. It is often unclear as to which
of the new clusters best maps to the older set of probes. Unfortunately, revision control is
often not comprehensive in these accession number databases, and it becomes very difficult
to link new clusters with old designators.

• 
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Genomic sequence BLASTs, but not genes: Sometimes, gene sequences from positive
microarray findings can be found in stretches of genomic sequence using BLAST. Additional
bioinformatics (and biological) work then needs to be done to determine the gene
boundaries before biological validation can take place.

• 
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Chapter 6: From Functional Genomics to Clinical
Relevance—Getting the Phenotype Right
Functional genomics experiments can only have biological or clinical relevance if information (or
better yet, knowledge) external to the system being studied is employed. Even in the case of
so−called unsupervised algorithms or clustering techniques, the early investigations (e.g., [56, 63])
made sense of the clusters of expression only by reference to external knowledge: the genes known
to be involved in cell cycle regulation, protein translation, etc. Without such external a priori
knowledge, the observed clusters are of little use in generating or testing new hypotheses about
biology. In the experiments that had the most obvious clinical relevance, such as finding genes that
aid in the distinction between acute myelogenous leukemia versus acute lymphoblastic leukemia
[78], the prognosis of large B−cell lymphoma [3], or pharmacogenomic prediction of gene targets for
chemotherapy [39], it was central to the import of these investigations that they integrated
well−characterized external biological or clinical data with the expression data.

If functional genomics is to lead to a qualitative change in the way in which clinical medicine
(diagnostics, prognostics, and therapeutics) is practiced, then most studies will similarly have to
incorporate high−quality and relevant external data. That is, if we want to know how a gene
expression pattern may predict mortality, a particular disease profile, or drug responsiveness, we
need to be at least as meticulous in characterizing the patients, their histories, their tissues, and the
contexts surrounding how data were acquired, as we are in obtaining the gene expression profile.
Perhaps because the need has only become recently apparent, to date there has been little in the
way of systematic approaches to the acquisition of such extragenomic data. We discuss here why
this is and what steps can be taken toward a more systematic approach.

6.1 Electronic Medical Records

A central intellectual and technological asset to functional genomics has been GenBank (see
section 5.5.1) and related genomic and protein databases. Their standardized data models have
allowed research laboratories throughout the world to rapidly populate them with the very latest
information. In turn, these databases are freely available throughout the world via the Internet and
have seeded, accelerated, and inspired thousands of research projects.

In contrast, there are few, if any, consequential shared national clinical databases. Specifically,
patient data in one information system can only rarely be transferred to another system in clinical
practice. Within a single healthcare system, annotations such as billing diagnoses will suffer from
distortions imposed in an attempt to maximize reimbursement for care. Despite decades of research
and development of clinical record systems, they remain problematic. If properly constructed and
maintained, electronic medical records could provide an invaluable set of phenotypic annotations
with which to bring clinical relevance to genomic data.

The marked contrast between genomic and clinical care databases is deceptive. The Human
Genome Project has benefited from the elegant simplicity of the genetic code. Consequently, there
are relatively few items that GenBank requires to be submitted for a entry to be a valid (and useful)
component to its database. The clinical care of human beings is a far more complex process,
requiring at the minimum a detailed record of the history of multiple clinical interventions and
outcomes, relevant life history, and clinical measurements that span several modalities, from serum
chemistry to brain imaging. It is not surprising that the data model required to capture all this
information is extremely complex as is evidenced by the Health Level Seven (HL7) Reference
Information Model [147]. It is a remarkable tribute to the persistence of the individuals involved in
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these clinical data model standardization efforts that they have been able to arrive at a reasonably
adequate standardized representation of not only the aforementioned descriptors but much of the
process and business of clinical care.

This challenge relates back to our prior discussion of the complexity of microarray expression data[1]

which is much more akin to that of clinical laboratories than that of DNA sequences. Microarray
measurements reflect the particular artifactual qualities of the measurement system used, in
contrast to the (at least theoretical) invariance of sequence with sequencing technique. It is
therefore not surprising that even prior to encompassing the entirety of clinical annotation, the
genomics community has faltered in developing shared and standardized data models where the
simplicity of the genome no longer dominates. However, the complexity of microarraydata models is
easily dwarfed by the complexity of clinical data, and the effort to generate a standard human
phenotypic data model for genomics would similarly demand orders of magnitude more effort than
has been invested in data modeling by functional genomicists to date. It is therefore somewhat
surprising that several efforts to develop clinical phenotype data models have been proposed
without much reference or attempt to co−opt the efforts of the clinical informatics community.

A more efficient mechanism might be for functional genomicists and bioinformaticians to appropriate
that segment of an existing clinical data model, such as HL7.

This might require that members of the bioinformatics community participate in an HL7 committee in
order to fully accommodate the annotation needs of functional genomics. This would be a far
smaller cost than having to duplicate the existing massive efforts of HL7.

[1]As we described in section 5.4.

6.2 Standardized Vocabularies for Clinical Phenotypes

Standardized clinical vocabularies are just as essential as standardized phenotypic data models.
The lack of widely accepted standardized vocabularies for clinical care has greatly hampered the
development of automated decision support tools and clinical research databases. The impossibility
of guaranteeing that a serum sodium or systolic blood pressure has the same code or term
throughout our hospital system is troublesome. Fortunately, several efforts in the private and public
realm, e.g., Logical Observation Identifiers, Names, and Codes (LOINC) [99], are addressing this
issue. The National Library of Medicine has invested large resources in the Unified Medical
Language System (UMLS) to enable these different vocabularies to be interoperable, at least at a
basic level [120, 158]. Most of the most widely used vocabularies, such as Reed codes [84],
Medical Subject Headings (mesh) [51], and Systematized Nomenclature of Medicine (SNOMED)
[53] are represented in the UMLS.

The same problems are not unknown in bioinformatics as is pointed out in the section on
nomenclature (section 5.5). Many microarray technologies use their own system of accession
numbers, which then have to be translated into a more widely used nomenclature such as
LocusLink.

As is the case for data models, as functional genomic investigations venture into the domain of
clinical correlates of gene sequence, expression, and protein concentrations, the lack of
standardized clinical vocabularies will prevent large−scale accumulation of useful data at the
national or even regional level. For example, if a set of expressed genes are thought to be
associated with a particular set of cardiac arrhythmias, this association will only be found if the
nomenclature used to describe the arrhythmias in the clinical databases is drawn from one of the
standardized vocabularies. Additionally, these vocabularies would have to be used with the same
semantics at each data collection site. Rather than inventing yet another competing standard for a
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clinical vocabulary, bioinformaticians should examine which of the existing component vocabularies
within the UMLS best suits the needs of a particular set of studies.

6.3 Privacy of Clinical Data

In 1997, the Institute of Medicine [47] reported on significant lacunae in both technology and policy
in protecting confidential patient data. Among the problems of most concern emphasized in this
report was the relatively unrestricted access by third parties to these data for secondary uses and
the lack of the adequacy of the anonymization process (in practice and theory [170, 171]).
Subsequent to this effort, the clinical informatics community developed several model confidentiality
policies [153] and cryptographic identification systems [111, 174].

As the fruits of the Human Genome Project are translated first into clinical research protocols and
then into clinical practice, personally identifiable genomic data will find their way into several
instances of the information system. The challenges posed to security and privacy of such data
might seem to dwarf any encountered to date with conventional clinical data. At first blush, genomic
information is likely to be much more predictive of current and future health status than most clinical
measurements. And, with very few exceptions, an individual's genome is uniquely identifying and
applicable to that individual's entire life. This identifiability is apparently more reliable, persistent,
and specific than typically cited identifiers, including a person's name, social security number, date
of birth, or address. In practice, however, the widespread nature of clinical databases and the ease
with which a unique individual can be identified [170] allow for breaches of privacy to be effected
relatively trivially, even without genetic information. Furthermore, as demonstrated by insurance
companies, highly accurate actuarial and prognostic knowledge can be developed solely on the
basis of clinical history, habits such as smoking, family history,a physical examination, and a
handful of laboratory tests. It remains to demonstrated, given all the genomic reductionist fallacies
reviewed at the beginning of this book, just how much additional prognostic accuracy will be
delivered by the use of personal genomic data.

Nonetheless, at the very least, the architects of information systems storing genetic data should
learn from all the mistakes and designs developed for the security architectures and privacy policies
of conventional clinical information systems. Conversely, the dire concerns voiced over the storage
of personal genetic data will likely generate new policies and security architectures that will enhance
the confidentiality of clinical information systems. Moreover, when personal genetic data become
incorporated into routine medical practice, the safeguards in place for the medical record's
confidentiality will have significant import for the confidentiality of the genetic data that will be
referenced in the medical record. It also may further drive the increased degree of patients' control
of their own medical record [125].

Why should we bring up these concerns at all in a book on functional genomics? Simply because
there are two strong imperatives to keep the privacy of the patient or tissue donor intact. First, on
the simple grounds of human rights, there is a basic or implicit contract between researchers and
patients. The second and less altruistic motivation is that if the confidentiality of the patient is
breached, even the perception of the loss of confidentiality (particularly if it involves a disease for
which there is attached social stigma or risk of loss of employment or income) could jeopardize an
entire study. Or it could well lead to a broad societal reaction against genomic studies. Even now,
there exist multiple recourses for the patient to obtain both civil and criminal penalties against the
researcher. These penalties have further been formalized by the recent components of the Health
Insurance Portability and Accountability Act (HIPAA) as amended in the final days of the Clinton
administration in 2000 [32].[2] In this brief section we outline the major obligations involved in
protecting the confidentiality of genomic patient data and common pitfalls in implementing them.
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6.3.1 Anonymization

In theory,if a database were to be truly anonymous, then, even if it fell into the possession of an
unscrupulous party, no harm could come of it. Therefore, a first attempt at the design of a functional
genomics database will typically involve one of the following two strategies for anonymizing a
database.

The first strategy is to delete or replace common identifying attributes, such as name, date of birth,
or address, which could be used very easily with external databases to identify the patient.[3]. The
risk with this approach is that although it does indeed reduce the ease of identification to eliminate
these common "face recognizable" identifiers, the records can still be readily identifiable. The
underlying insight is that there will be a list of attributes, such as which doctor the patient visited,
when the patient was first diagnosed, or what kind of cancer the patient had, which can serve to
uniquely identify the patient. At the very least, it can be used to reduce the set of patients matching
these attributes to a handful of individuals. Then, if there is an incentive to do so, there is little or no
barrier to reidentification of the patient record. This approach has been most extensively developed
and documented by Latanya Sweeney [169,170], who documented that even meticulously
deidentified records such as those from the billing systems of Medicare could be used to re−identify
patients, including prominent politicians. She developed a collection of programs, called SCRUB,
which enable an increasing degree of anonymity due to elimination of data fields which could be
used to particularly identify a single patient. Nonetheless, one of the clearer messages of that
research was that to the degree that a clinical database is useful in providing clinical detail to
characterize the patient, there is an increasing risk of breach of the anonymity of that record. With
this in consideration, designers or architects of functional genomic databases should be mindful of
being parsimonious in their choice of attributes used to annotate these clinical databases, such that
only the minimum needed for the purposes for which the databases are designed should be
implemented.

The second, alternative approach is to segregate those fields, including name and addresses, that
would be the most revealing of the patient's identity and place them into a separate identification
database controlled by a third trusted party (trusted by the patient) who would only allow the patient
data to be "joined" to the nonidentifying data with explicit permission of the patient or the institutional
review board of a research institution. That is, the reidentification of the patient would be determined
by consent and disclosure policies and practice. We note that the anonymity of the nonidentifying
data could still be compromised by the same reidentification techniques applied to the scrubbed
databases described above.

In our own investigations of multicenter large−scale genomic databases, we have investigated the
use of cryptographic health identification systems which could be used locally or nationally to create
systems that enabled either the patient, the provider, or the institution to determine very specifically
under which circumstances the patient record could be joined to the identifying information [111].
Furthermore, we have argued for patient−controlled encryption of their record [125] to prevent the
application of reidentification techniques.

In the end, however, it should be recognized that no matter how secure the means used to encrypt
the database or to anonymize it, if there is a sufficiently large financial or personal incentive to
breach the privacy of a particular individual, it will be done, whether through a direct assault on the
protection measures used, or through a corruption of internal controls be they technical or
sociological. In this light, it is most reasonable to ensure that when patient samples are entered into
a database, they be obtained only upon very extensive debriefing of the patient of the measures
that will be used to protect the record, as well as the potential risks. With full disclosure and
consent, there is much less likely to be acrimony and post hoc disruptions that may affect the
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integrity of the entire functional genomic investigation undertaken by a particular investigator.

6.3.2 Privacy rules

By passing the HIPAA, Congress established standards governing the privacy of identifiable health
information. Though this legislation covers many aspects of privacy in clinical medical care, there is
a significant area of overlap with clinical research and the practice of obtaining consent from human
beings involved in such research.

Those organizations covered by the HIPAA legislation and the privacy rule can continue to use
properly deidentified health information for research purposes. However, those organizations can
only use and disclose protectedhealth information for research purposes with permission from each
individual, or without individual authorization in a restricted set of cases.

An institutional review board has approved a waiver of research participant's authorization.
This could be done if all of the following conditions are met:

Use of the information involves no more than minimal risk to the individuals;♦ 
The waiver will not adversely affect the privacy rights of the individuals;♦ 
The research could not be done without a waiver or without use of the information;♦ 
The risk to the research subjects is low compared to the potential benefits to those
subjects;

♦ 

A plan is in place to protect against improper use;♦ 
Identifiers to the information will be destroyed as early as possible;♦ 
The information will not be re−used.♦ 

1. 

The researcher documents that the data will be used only to design or assess the feasibility
of a research project.

2. 

The researcher documents that the protected health information of deceased individuals is
being used and is necessary for research on their decedents.

3. 

This section is not meant to provide specific legal advice on this subject. More information about the
implications of HIPAA on clinical research is available at http://www.aspe.dhhs.gov/. There are other
U. S. laws to protect research subjects, including the Common Rule from the Federal Drug
Administration. Privacy rules in other countries, especially in the European Union, will differ. The
reader is strongly encouraged to consult his or her own institutional review board, or equivalent
organization, for further guidance on this subject.

[2]And as pursued through at least the early months of the George W. Bush administration.
[3]A list of such identifiers that have been deemed of particular risk by the U.S. Department of Health
and Human Services as part of HIPAA can be obtained at http://www.aspe.hhs.gov/

6.4 Costs of Clinical Data Acquisition

"Getting the data in" has often been cited [130] by authorities in clinical informatics as being among
the most difficult challenges in successfully deploying clinical information systems. In particular, the
costs of acquiring detailed and structured data from the clinical care process have been daunting.
Voice and handwriting recognition information systems have not been broadly adopted for a variety
of performance and usability issues. These cost and practicality issues will continue to present an
obstacle to clinical information system utility and deployment until better solutions are arrived at. In
contrast, the Human Genome Project has managed to achieve significant economies of scale in
data acquisition in sequencing and expression measurement. Gene microarrays alone have
dropped in cost by a factor of 10 in just the last 2 years.
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Here again, once genomic investigators attempt to bridge the gulf from purely genomic data sets to
phenotypically (i.e., clinically) annotated data sets, they will be confronted with the same challenges
of clinically oriented, codified data acquisition. The questions of which user interfaces are the most
cost−efficient, reliable, and generalizable to multiple clinical domains are among the implementation
and design challenges that they will face. Although they have yet to arrive at definitively successful
answers, clinical informaticians have already completed several decades worth of engineering and
ethnographic studies [49, 50] addressing the very same questions.

We have personally witnessed the difficulties of some genomic studies in which the genotyping
portion of the study was readily completed but the phenotyping was costly, slow, and ultimately rife
with errors. This experience is likely to be increasingly common and therefore the need to solve the
clinical annotation challenge is pressing.
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Chapter 7: The Near Future

Overview

In this chapter, we take the risky road of futurology with respect to functional genomics. We will
make it even riskier by taking a short−term view, so that we will soon know just how far off the mark
we were. The reason that we are at all engaging in this exercise is that the technological, biological,
and analytic aspects of functional genomics investigations are changing every year. This leads to
the, possibly vain, conceit that anticipation of future trends will allow a laboratory to invest in the
most high−yielding technologies and personnel. We find ourselves asking the same questions many
of our collaborators have asked us in this regard:

What technology should we invest in for gene profiling measurement?• 
What software platforms should we license, install, and become proficient in using?• 
Even if we consistently use the same platform, will we be able to compare results of
expression profiling experiments across different generations of the same microarray
technologies?

• 

What are the most important issues we should plan for in the next 10 years to best leverage
our efforts in functional genomics?

• 

We attempt here to begin to answer these questions using the data on hand, our intuition, and our
experience with past technological revolutions. Caveat lector, prognostication is all too cheap.

7.1 New Methods for Gene Expression Profiling

In the last 5 years of the twentieth century, and subsequently, there has been rapid growth in the
development of alternative techniques for measuring gene expression on a large scale. There are
two principal drivers behind the growth of diverse measurement techniques. The first is simply the
commendable attempt to provide technologies that are more reliable, reproducible, precise, and
cost−effective. The goal, after all, is to be able to make the measurement of a set of gene profiles
no more expensive than a simple serum chemistry drawn routinely during a doctor's visit. It should
be robust and affordable enough to be deployable widely for purposes of microbial genome
detection for public health surveys and for routine screenings for a variety of diseases during clinical
care and well−care checkups. Unfortunately, the world of commercial intrigue and murkiness around
intellectual property has been the second important driving force in developing these technologies.
Affymetrix, for example, has a patent that, under some interpretations, might include a range of
microarray gene expression measurement technologies on a two−dimensional surface.
Consequently, much of the development of alternative technologies has been focused on avoiding
the potential condflict with this intellectual property (see figure 7.1).
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Figure 7.1: Lawsuits in the microarray field. With the number of lawsuits already in this area, it
should be no surprise that companies in this industry are striving to determine new and unique
intellectual property. (From Gibbs et al [77].)
We review here some of the major and upcoming technologies. Perhaps the best way to think of
these technologies is within the following framework. Some of them use full−length cDNA probes,
others use oligonucleotide probes. Independently of what kind of probe they use, the technologies
may use a solid two−dimensional surface, a three−dimensional matrix, or optically coded beads.

We are hardly going to be able to even enumerate all the emerging technologies for expression
measurement. For the latest up−to−date list, the reader is directed to http://www.gene−chips.com/.
Also, for an excellent review of the scientific underpinnings of many of these technologies, we refer
the reader to a review by Southern et al. [166] which provides a survey of the physicochemical basis
of molecular interactions of hybridization on microarray surfaces. We would also impress upon the
reader that most of the technologies described either have only begun early production lines or are
still under development. Consider that it has taken well over 3 years, and counting, for the
mainstays of microarray expression measurement, oligonucleotide microarrays, and robotically
spotted microarrays to achieve minimal levels of accuracy and reproducibility. Then, as interesting
and appropriate as some of the following methodologies may appear, they bear close scrutiny and
testing prior to any large scale attempts for use in scientific experimentation.

Additionally, each of the technologies described is, of necessity, undergoing iterative processes of
improved quality, higher density, and lower cost. This makes it all the more challenging to decide
which microarray platform to adopt. This is very much analogous to choosing a home video gaming
system: Nintendo, Sony, Microsoft, each has its own game console. As each manufacturer rolls out
its next−generation platform at different times, consumers have to agonize over whether it is better
to buy the platform that best suits their needs today or the one that will do twice as much in 4
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months. As the refinement of these platforms is an iterative, continual, and competitive process,
there is no stable or consistent "correct" response to the consumers' dilemma.

The video gaming console analogy is also relevant to the commoditization of microarray platforms.
In the 1980s, real−time three−dimensional rendering was the province of highly specialized,
expensive computer systems available in only a few laboratories. The cost of the hardware and staff
far exceeded the cost of the system software. Now, with commodified video consoles, over the short
life of a consumer system, the major cost is the acquisition of software and game modules.
Similarly, the current microarray systems are labor−intensive and the hardware (including the
microarrays themselves) and staff drive the high costs of expression profiling laboratories. As a
result of the competition and improvements in manufacturing technology, the costs of hardware and
attendant staff will diminish and likely become dominated by the costs of tissue acquisition, banking,
and annotation.

With these issues in mind, we review some of the available and upcoming platforms.

7.1.1 Electronic positioning of molecules: Nanogen

Most biological molecules have a natural positive or negative charge. When these molecules are
exposed to an electric field, those with a positive charge move to an area with a negative charge,
and vice versa. Novel microarray technologies such as those of Nanogen (San Diego, CA) use this
property to maneuver molecules to specific test sites on an electronic microchip. By carefully
controlling which element of a grid of electrodes is charged, this technology can direct many test
molecules to specific areas of the chip. Because of the more active nature of this technique, this
could potentially deliver molecular binding on the microarray several orders of magnitude faster than
passive hybridization methods.

Regarding gene expression measurement, a cDNA molecule that is negatively charged moves in an
electric field to an area of net positive charge. The sample DNA is significantly concentrated over
time in the area of positive charge. DNA that does not have the right mass/charge ratio is repelled
from the area of the electrode under closely controlled electronic conditions (see figure 7.2). The
current trade−off (pun intended) for all this configurability is that the density of features of these
microarrays is at least one order of magnitude less than the current density offered by companies
such as Affymetrix. However, the density of this technology is rapidly growing.
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Figure 7.2: The Nanogen microelectronic array.
This system may be best suited for laboratories that are interested in a medium−throughput platform
that will allow several genomic applications such as gene profiling, proteomics, and genotyping.

7.1.2 Ink−jet spotting of arrays: Agilent

Agilent (Palo Alto, CA) is building on its long history of highly engineered ink−jet delivery systems. It
has licensed technology from Rosetta Inpharmatics (Kirkland, WA) so that it can synthesize and
"spray" onto a glass slide oligonucleotide molecules in a highly localized fashion (see figure 7.3).
That is, the nucleotides are "sprayed" separately by the ink−jet heads and linked in situ on the glass
slide into oligonucleotides. At present, this technology permits up to 25,000 features per glass slide
using volumes only in the picoliter range per feature. Because the features are built using longer
nucleotides, there is typically only one feature per gene. This is in contrast to the 40 different
features that are used in each probe set on Affymetrix oligonucleotide microarrays, using shorter
and therefore individually less specific oligonucleotides.

198



Figure 7.3: Flexibility of on−the−fly ink−jet arrays. On the right is a comparison of morphology of
ink−jet versus pin arrays. Ink−jet printing produces uniform and consistent features. An artifact of
on−the−fly printing is formation of oblong spots at maximum print speed (full fires) that can be made
into circles upon slowing down. This underscores the theoretical flexibility of this system.
In theory, the contact−free nature of the ink−jet process could result in fewer spatial artifacts than
the robotically spotted technique. Also, the synthesis technique used allows oligomers with a length
up to 60 nucleotides to be constructed. Again, in theory, this could provide more specificity than the
shorter oligonucleotides used by Affymetrix, and better normalization by GC content and correction
for cross hybridization than longer cDNA molecules. The nature of this technology allows for a very
rapid design and test cycle for these microarrays. Although it remains to be seen (at the time of this
writing) whether Agilent does deliver on the promise of this technology, it has an opportunity to
create a high−quality platform with manufacturing costs orders of magnitude less than others.

7.1.3 Coded microbeads bound to oligonucleotides: Illumina

Technology from Illumina (San Diego, CA) uses oligonucleotides linked to beads which are
individually optically coded. These beads are then bound to the tips of individual fibers in a
fiber−optic bundle (see figure 7.4). The company states that currently 2000 different genes can be
represented on each fiber bundle, but appears to be scalable from 50,000 to 5 million beads per
bundle. In addition, each array contains between 96 and 1536 bundles. Each bead can be optically
interrogated by laser excitation via the fiber−optic bundle, using a proprietary technique. This
technology is very much in the early testing stage and we will not have a good idea of its
reproducibility and accuracy until after more independent testing.
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Figure 7.4: The Illumina BeadArray.
If this technology does in fact prove viable, then its potential scalability to millions of probes will
allow new ground to be reached in profiling. For example, millions of probes would allow each gene
in the human genome to be represented, as well as all known polymorphisms and alternative
splicing products.
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7.1.4 Serial Analysis of Gene Expression (SAGE)

SAGE is a technique designed to take advantage of high−throughput sequencing technology to
obtain a quantitative profile of cellular gene expression [183]. Rather than directly measuring the
expression level, the technique "counts" the number of transcripts or "tags" for each gene. A tag is a
specific oligonucleotide of length 9 to 11 nucleotides corresponding to the transcript of interest
which is selected on the 32 end of a transcript, relative to a site recognized by a restriction enzyme
(usually NlaIII). First, double stranded cDNA is made from mRNA, using a biotinylated oligo(dT)
primer. The cDNA is then cut with the anchoring enzyme (NlaIII), expected to cut every at every 256
base pairs. The resultant double−stranded cDNA is bound to streptavidin beads, divided into two
pools, and ligated to one of two linkers. The tags are then spliced out using a tagging enzyme that
cuts at a location away from its recognition site (such as FokI). The tags are joined together and the
resultant string of tags is sequenced. This sequencing allows each SAGE tag to be counted.
Therefore, the number of tags for each gene that the tag represents should be proportional to the
expression level of that gene. Figure 7.5 illustrates this process.
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Figure 7.5: The Serial Analysis of Gene Expression. (Derived from Madden et al. [124].
SAGE suffers from the potential lack of specificity of these oligonucleotide tags, much in the same
way as do the oligonucleotide and cDNA microarrays. It can be argued that the small length of the
tags makes them even more susceptible to nonspecific interactions (i.e., multiple genes or gene
products with the same sequence as the oligonucleotide). In fairness, the most recent gene profiling
investigations use longer nucleotide sequences. Furthermore, and more problematically,
sequencing technology has an error rate that might substantially degrade the correct assignment of
a tag count to a gene. Although there have been some early, optimistic results for small numbers of
genes, showing the correlation of sage results with microarray expression values [100], more
comprehensive testing is necessary. Of course, as with all these technologies, the choice of a "gold
standard" to rate such comparisons is hard to come by.
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7.1.5 Parallel signature sequencing on microbead arrays: Lynx

Lynx Therapeutics (Hayward, CA) combines two techniques to assess gene expression: the ability
to sequence without using a gel, and the ability to clone millions of templates onto microbeads [31].
Specifically, cDNA templates are first ligated into vectors containing a set of different 32−mer
oligonucleotide tags. A 1% subset of these ligated vectors is taken, such that each template is
ligated to a unique tag and each template is represented at least once. The subset is then
PCR−amplified, made single−stranded, then hybridized against a set of microbeads each
separately containing a sequence complementary against a 32−mer tag. The microbeads are then
fixed in place within a flow cell. Sequencing can take place directly on the microbeads through
successive use of restriction enzymes exposing 4 base pairs, which in turn can be successively
bound by florescently labeled probes.

Since the source templates can be generated from mRNA, this can effectively be used as a
massively parallel method to find tags associated with each mRNA. Also, since presumably each
copy of each mRNA is uniquely labeled with a different tag, each copy is sequenced separately, and
thus this system is not only quantitative, but may be more sensitive at lower gene expression levels,
like SAGE. At the time of writing, commercialization of this technique has just started.

7.1.6 Gel pad technology: Motorola

Using technology developed at the Argonne National Laboratory, Motorola Life Sciences
(Northbrook, IL) has developed a novel "gel pad array" technology and has begun early production
rounds of these arrays. Within each "gel pad," or gel matrix, several different kinds of reaction
technologies can be embedded, including oligonucleotides. Although the oligonucleotides attached
to the gel pads (themselves 100 ¼m in width) might not seem to have the same access to the
free−floating complementary DNA strands in a biological sample as they might have on a glass
slide, in practice they appear to have similar specificity and sensitivity of hybridization. The use of
oligonucleotides is preferable to full length cDNA as reproducibility and cost are kept lower and the
probes can be suitably normalized for GC content. As is the case for other oligonucleotide
technologies, care must be taken in selecting an oligonucleotide sequence so that it does not
cross−hybridize with other genes.

As the gel pads allow oligonucleotides lengths of greater than the 25¼m used in Affymetrix
microarrays, in theory they can provide higher specificity. Also, although the feature size is relatively
large compared to oligonucleotide arrays made by Affymetrix, current gel pad technologies can be
arrayed up to 10,000 probes on a single glass slide. As for other platforms, higher densities are
promised.

7.2 Respecting the Older Generation

It has already happened that laboratories have invested thousands of dollars and hours into one
generation of microarray technology, and then have had to move on to the next generation of
microarrays. After several experiments, it becomes apparent to them that results across the
generations of microarrays are not identical. The question then arises of how to salvage the
information from the first generation of microarrays. The concern is, of course, that they will have to
treat the data sets of different microarray generations as distinct and incomparable and therefore
they will lose "statistical power" in their classification or clustering studies. This concern is magnified
when the earlier studies involved unique and irreplaceable tissue samples which may no longer be
available to be studied with the newergeneration microarrays. We illustrate this challenge here with
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some of our own experience with the Affymetrix platform. We hasten to add that the challenges we
have had in combining results across generations of this platform have their correlates on other
platforms.

7.2.1 The generation gap

The HuGeneFL and HG−U95A oligonucleotide microarrays from Affymetrix are two successive
generations of the platform for human expression profiling. Because the latter microarray (one of a
5−chip set) is a superset of the former generation, one would expect that probe sets in one
generation would have the same expression pattern as measured in the next generation of
microarrays. However, as demonstrated in figure 7.6, there are a large number of probe sets that
have very poor correlation when the same RNA sample is hybridized identically and in the same
laboratory to the two generations of microarrays.

Figure 7.6: Poor measurement reproducibility across microarray generations. Two generations of
Affymetrix microarrays were used to the gene expression of seven samples. Each of the 8075
common probe sets thus had seven measurements from both the older HuGeneFL and newer
HG−U95A microarrays. The line represents the distribution of correlation coefficients of each probe
set. Though the exact correlation coefficient may not be useful, it is notable that over 25% of the
probe sets showed measurements that were zero or negatively correlated across generations.
(Derived from Nimgaonkar et al. [136].)
The most likely explanation for this disparity is that Affymetrix designed the HG−U95A array to use a
set of probes or oligonucleotides for each probe set that may only partially overlap the set of probes
used in the HuGeneFL arrays. Presumably this reflects improved oligonucleotide selections based
on greater knowledge of the genome and accumulated empirical results of the specificity and
sensitivity of particular probes. However, because Affymetrix has continued to maintain secrecy
around the sequence of each oligonucleotide in a probe set, we cannot assess this directly.
Affymetrix does release a table mapping the probes (within a probe set) in one generation to the
next. This allows a comparison of how well probe sets correlate as a function of the number of
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shared probes (see figure 7.7). At a threshold of three or more probes in common per probe set, the
correlation is substantially improved. This may explain in large part why the overall correlation
between the two generations of microarrays is so poor.

Figure 7.7: Measurement reproducibility of probe sets across microarray generations, by the
number of probe pairs in common. A total of 8075 probe sets are deemed in common by Affymetrix
between the older HuGeneFL and the newer HG−U95A microarrays. However, each probe set has
a varying number of common probe pairs, from none to all 16. The bar graph represents the
distribution of the 8075 probe sets, and the line represents the correlation coefficients of each set of
probe sets across generations. For example, one finds a correlation coefficient of .77 when plotting
all 6412 probe sets with one probe pair in common across microarray generations. (Derived from
Nimgaonkar et al. [136].)
7.2.2 Separating the wheat from the chaff

We know then that the consistency of expression measurements for the overall set of probe sets
across a generation of microarrays is poor. There also is a subset of probe sets for which
consistency is high. To maximally salvage the data of the HuGeneFL arrays, then, the goal should
be to determine which probe sets are members of that high−consistency subset. One reasonable
heuristic is to pick a threshold correlation and and then pick only those probe sets that have at least
n probes in common such that the correlation for n as obtained from the histogram of figure 7.7 is
above the correlation threshold. Just what this threshold should be will be determined by a decision
analytic procedure of the kind illustrated on page 2.9.

However, the above procedure will only provide a small subset of the genes represented by the
various probe sets on each of the microarrays. There may be a substantially larger set of genes that
are consistently reported across the generations of microarrays that might be "salvageable." If a
particular laboratory is in possession of duplicate hybridizations across these generations, then the
technique described in section 3.2.2 can be adapted to provide an estimate of which probe sets are
the most consistent.
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That is, if the identical RNA extract has been hybridized to two generations of microarrays, then a
simple program can be written to determine for any measure of gene expression (e.g., the Cy3/Cy5
ratio, Average Difference, Log Average Ratio, Present vs. Absent Calls, etc.) the threshold (e.g.,
minimal Cy3/Cy5 ratio) above which the expression levels reported have an acceptable level of
consistency across the microarray generations. These thresholds will not only vary with the
particular microarray platform employed but also with the laboratory performing the hybridizations
and the tissue types employed. Consequently, this procedure must be done for each laboratory and
the results may not be safely generalizable across laboratories.

7.2.3 A persistent problem

This problem of the comparability of expression measurements across generations of microarrays is
likely to be with us for several years. Microarray technology is in such flux that a definitive platform
that only suffers small incremental changes is not in the immediate future. Given that laboratories
will be studying the same biological system for several years, and therefore over several
generations of microarrays, the most prudent and conservative advice would be to:

Decouple the hybridization schedule from tissue sampling and banking. Preferably all the
hybridizations should be done within a few months, if not days. The effect of the different
time of hybridization is often visible in subsequent analysis. For example, careful review of
the clustering of the acute myelogenous leukemia (AML) and acute lymphocytic leukemia
(ALL) data set of Golub et al. [78] reveals that the test and training sets automatically cluster
separately. That is, the differences between the gene profiles in the test and training sets are
of the same order as the differences between AML and ALL. As reported in [78] the only
difference between the two sets was the date on which the hybridization was done. In
addition to environmental and procedural variation, it is likely that each batch of microarrays
was manufactured on a different date.

• 

Purchase or construct sufficient microarrays to last your entire study. Even if a newer and
better generation of microarrays becomes available, the quality of the study is best served
by staying with a single generation of microarrays. Otherwise, the investigator will have to
wander into the uncertain territory of estimating consistency across generations of
microarray technology for each gene interrogated by the microarray, as outlined above.
Unfortunately, some studies necessarily are so long as to make the logistics of this tactic
unrealistic.

• 

Maintain a reference RNA pool. This can be used to determine the consistency of
measurements across microarray generations when all else fails. The selection of the
reference pool should be informed by the need to maintain a large amount of reference RNA
over years with minimal degradation. In addition, the pool should contain a distribution of
transcript abundance that is appropriate for the experiments envisaged. Too much or too
little of a transcript will cause skewed noise or variation profiles due to different degrees of
cross−hybridization against different biological samples.

• 

7.3 Selecting Software

Any high−throughput functional genomics investigation will require that there be an armamentarium
of analytic tools on hand. Even a large laboratory that has several bioinformaticians creating
customized tools will still haveto integrate these tools with the best−of−breed available commercially
or through academic licenses. More often, there is insuffcient time or personnel to develop any
software locally, so external software tool kits must be obtained. The decision of how to go about
acquiring these is inevitably weighed down by considerations of the local environment, local
resources, budgetary constraints, and the need for customizability of these tool kits. It is well outside
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the scope of this book to address this process. Nonetheless, we provide here an abbreviated
framework with which to consider acquisitions of bioinformatics software for use in functional
genomics.

In order to provide the analytic services required, there are two broad categories of function that
must be served: a collaborative data−sharing environment, and a set of robust analytic tools. The
former will allow a research group to share common materials such as microarray data sets,
annotations of these data sets, publications, and workflow tools such that the progress of any
particular study can be monitored, and the latter will provide for the extraction of clinical or biological
knowledge from genomic data sets.

Primary concerns in the first category, collaborative software platforms, will be

the scalability of the software to satisfy large numbers of local and remote users;1. 
the security of the site to protect both the intellectual property of the data as well as the
privacy of any patients whose data may be stored in the database.

2. 

A highly nontrivial aspect of the data−sharing or collaborative software tool kit is to maintain a data
model for the microarrays that is capable of encompassing all the measurements that are likely to
be obtained through the available microarray platforms (see section 5.4). Similarly, the collaborative
software should have a suffciently detailed and flexible phenotypic data model to allow structured
annotations using controlled vocabularies to support the phenotypic−genotypic correlations that are
an essential component of a successful functional genomics pipeline.

The second category of bioinformatics software includes the analytic tools that provide the
implementation of the techniques that we have described in the data−mining chapter (chapter 4)
and in the measurement techniques chapter (chapter 3) such as fold difference, self−organizing
maps, dendrograms, support vector machines, relevance networks, k−means clustering, matrix
incision trees, gene shaving, and others. They also provide means of visualizing analytic results and
their relationships and linking these with the published literature, annotations, and links to relevant
biomedical databases.

In the late 1990s software packages fell cleanly into one of those two aforementioned categories.
Subsequently, in order to capture additional market share, the analytic tool vendors have added
collaborative data−sharing capabilities and likewise the collaborative data sharing software has
become increasingly equipped with a suite of analytic tools commonly used in the investigations
reported in the literature. At present, however, few of the solutions are comprehensive. That is, the
suite of analytic tools provided by the collaborative software vendors are limited or limiting in their
analytic capabilities, and the collaborative, data−sharing, and warehousing facilities of the analytic
tools are embryonic and of unproven scalability. Some of the best software packages are free; they
have been developed often with federal funding by the best and the brightest and most
public−minded of bioinformaticians. As a result, an investigator may not always get what he or she
pays for in terms of value in quality software. Nonetheless, with respect to support for installation,
debugging, and technical advice, these will be very limited with any of these free packages. Also,
publicly available software packages typically require some knowledge of operating systems in
order to be able to install them correctly on the computational hardware platforms. This is
particularly true of Unix− and Linux−based computational platforms which are typically the most
stable and reliable of platforms but also require the most expertise in technical support and
management.

Some of the more notable free analysis solutions are listed and coarsely taxonomized in table 7.1.
Note that many of these are available for free only to academic users, and charges may apply for
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commercial users. Also, refer to table 5.2 for free data models and databases.

Table 7.1: List of freely available analysis software for microarray

Tool name Description URL http://
AMADA Dendrograms,

principal
components
analysis

http://www.web.hku.hk/~xxia/software/AMADA.htm

ANOVA Matlab software
programs for
microarray data

http://www.jax.org/research/churchill/software/anova/

Array Viewer Differential gene
expression

http://www.tigr.org/softlab

BRB array
tools

Excel software,
provides
scatterplots,
dendrograms,
and class
prediction

http://www.linus.nci.nih.gov/BRB−ArrayTools.html

CAGED Clustering by
expression
dynamics

http://www.kebab.tch.harvard.edu/caged

Cleaver k−means
clustering,
principal
components
analysis, and
classification

http://www.classify.stanford.edu/

Cluster and
TreeView

Dendrograms,
self−organizing
maps, k−means
clustering,
principal
components
analysis

http://www.rana.lbl.gov/EisenSoftware.htm

Cyber−T Differential gene
expression

http://www.genomics.biochem.uci.edu/genex/cybert

dChip Differential gene
expression

http://www.dchip.org/

Equalizer Microarray
normalization

http://www.organogenesis.ucsd.edu/TheEqualizer.htm

Expression
Profiler

Dendrograms,
with many
dissimilarity
measures

http://www.ep.ebi.ac.uk/

GeneCluster Self−organizing
maps

http://www−genome.wi.mit.edu/MPR/GeneCluster/GeneCluster.html

J−Express Dendrograms, http://www.ii.uib.no/~bjarted/jexpress/main.html
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self−organising
maps, principal
components
analysis,
k−means
clustering

MAExplorer Differential gene
expression,
scatterplots,
k−means
clustering,
dendrograms

http://www−lecb.ncifcrf.gov/MAExplorer

Multiple
Experiment
Viewer

Many
normalization,
clustering,
dissimilarity
measures, and
graphical options

http://www.tigr.org/softlab

RelNet Relevance
networks

http://www.book.chip.org/

SAM Excel software,
compares
expression to
clinical
parameters

http://www−stat.stanford.edu/~tibs/SAM/index.html

ScanAlyze Microarray spot
detection

http://www.rana.lbl.gov/EisenSoftware.htm

SpotFinder Microarray spot
detection

http://www.tigr.org/softlab

XCluster Dendrograms,
self−organizing
maps, k−means
clustering

http://www.genome−www.stanford.edu/~sherlock/cluster.html

Recent reviews of commercially available software tools in this domain include [29, 16, 35].

7.4 Investing in the Future of the Genomic Enterprise

If microarray technology is going to be commoditized such that it can be used routinely as a
measurement system, even in relatively unskilled hands, then what will distinguish that particular
genomic enterprise with aspirations after excellence?

The most pressing need and most obvious quality that will distinguish the best functional genomics
investigations from the rest will be the nature of the investigators participating. As to which
investigators these might be, the genomic pipeline outlined in section 1.5 points to the kinds of
expertise that will be most in demand. There will need to be top−flight basic biologists, pathologists,
clinicians with access to populations of interest, all capable of and motivated toward posing the
high−yield clinical questions that are likely to drive many of these investigations. Based on the
experience of several of the more successful laboratories, it seems that at least for the near future,

209



the largest and most pressing need for expertise is in the area of bioinformatics. A typical successful
laboratory will have approximately two thirds of its investigators drawn from the ranks of
bioinformaticians. This proportion is likely to be maintained for at least the next 5 to 10 years, until
the analytic tools are much more robust and the analytic approach is systematized and
standardized. At that juncture, it may be that bioinformatic analyses will be packageable in the same
way as common biostatistical analyses for clinical trials are packaged in programs such as SAS
(Statistical Analysis System) or SPSS (Statistical Package for the Social Sciences). Of course, the
availability of such packages allows neophytes to perform uninformed, flawed, but superficially
good−looking analyses, a problem that most biostatisticians are all too aware.

For the foreseeable future then, the most significant investments in expertise will probably have to
be made in the area of bioinformatics. As individuals with training in biology and computer science
and and medicine are rare and hard to come by, most laboratories are currently hiring individuals
with strong computational skills, such as computational physicists, mathematicians, and
statisticians, and providing them with the intellectual tools and background to become
bioinformaticians. This process is not without its problems and uneven results.

A more lasting and productive process is to develop training programs that will produce the
necessary interdisciplinary education in biology, computer science, statistics and probability theory,
to mention just a few desirable knowledge bases that those individuals should be equipped with.
The National Institutes of Health have recognized this need and are beginning to fund several
training programs. Locally, the Division of Health, Sciences, and Technology (HST) at Harvard
University and the Massachusetts Institute of Technology has developed a Bioinformatics and
Integrative Genomics (BIG) training program. BIG is designed to take students with strong,
quantitative undergraduate backgrounds such as chemical engineering, mechanical engineering,
physics, mathematics, or computer science and then provide them with a curriculum that involves
clinical exposure at Harvard Medical School during clinical rotations, joint classes with Harvard
Medical School students, as well as basic biology courses. This and advanced topics in probability
theory, computer science, and other genomics−related courses will provide these students with the
basis to complete their doctoral thesis at HST in genomic science and subsequently to assume
leadership roles in genomic research.

Even now, when many of the genomic measurement techniques have in fact not yet been
commoditized, it is apparent that the most expensive and labor−intensive part of the genomic
enterprise will be the accurate and large−scale phenotyping of human populations and model
organisms. Specifically, it takes a lot more time and personnel to accurately document all the
characteristics of a human pedigree with all the attendant clinical findings and measurements of
each member of the pedigree, than to simply genotype or obtain expression measurements on each
member of the pedigree. Consequently, any substantive forward−looking genomic effort will involve
a carefully thought−out plan for the acquisition of detailed phenotypic information for all obtained
samples. This activity has previously been most associated with genetic epidemiologists who have
carefully obtained prospective perspectively gathered phenotypic data in well−designed studies
such as the Nurses' Health Study, the Physicians' Health Study, and the Framingham Heart Study.

With motivations similar to those of epidemiologists, prospective annotation and phenotyping are
indeed what are required. Those who expect to be able to mine the existing clinical records of a
patient's care for the necessary data are going to be disappointed. Even if they can manage the
issues of patient consent and data release, the quality of the clinical record and its emphasis is such
that most of the data needed for effective and reliable phenotyping of the clinical population are
unavailable. Consequently, any serious attempt to achieve high−throughput phenotyping for a
substantive study will require that a laboratory or institution invest in the necessary infrastructure for
such activities. These activities are labor−intensive and therefore not inexpensive. Specifically, it
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requires the use of trained personnel, such as genetic counselors, physician assistants, or highly
trained research assistants, who are aware of the complexity of human phenotyping. As human
subjects have relatively long lives as compared to microbial or murine models, these activities have
to be supported adequately over decades. High−throughput human phenotyping also requires that
the institutional laboratory put in place the consent and data release procedures that will enable the
research to be done subsequently, and to ensure that these procedures are consistent with the
aforementioned rules and regulations.

The importance of prospective phenotyping activity cannot be overemphasized. Without it, we will
never be able to bridge the gap between the observed and measured phenotypic and genomic data
and the clinical import of these data. This is a far less sexy activity than other aspects of the
functional genomic enterprise, but it ultimately will be what distinguishes those efforts that are the
most successful and clinically relevant. Who best performs such prospective high−throughput
phenotyping will determine whether the locus of human−related genomics will be under the
administrative ¿gis of hospitals, medical schools, the industrial sector, or governmental
organizations.

Glossary

Constructed in part from the glossary in Primer on Molecular Genetics, U. S. Dept. of Energy,
Human Genome Project, 1992.

A

Alternative Splicing Product
Variation in the way pre−mRNA is spliced together. Introns are typically spliced from
pre−mRNA and the remaining exons are pieced together to form a contiguous transcript of
mRNA (see Exon). However, the same set of introns may not always be spliced out, and the
resultant mRNA may have a different combination of introns and exons. These alternative
versions of the mRNA result in different downstream proteins being formed (alternative
splicing products). Alternative splicing products are only one reason why the number of gene
products is much larger than the number of genes. It is also a reason why an oligonucleotide
designed to hybridize with a subsegment of transcription products of a particular gene may
fail to measure the transcription of that gene.

B

Base Pair
The chemical structure that forms the units of DNA and RNA and that encode genetic
information. The bases that make up the base pairs are adenine (A), guanine (G), thymine
(T), cytosine (C), and uracil (U) (see DNA).

Binding Site
Regions on macromolecules which are sequence and structure specific and complementary
that enable any two or more macromolecules to mechanically bind and interact.

Bioinformatics
The collection, organization, and analysis of large amounts of biological data, using
networks of computers and databases. Historically, bioinformatics concerned itself with the
analysis of the sequences of genes and their products (proteins), but the field has since
expanded to the management, processing, analysis, and visualization of large quantities of
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data from genomics, proteomics, drug screening, and medicinal chemistry. Bioinformatics
also includes the integration and "mining" (detailed searching) of the ever−expanding
databases of information from these disciplines.

C

Chromosome
One of the physically separate segments that together forms the genome, or total genetic
material, of a cell. Chromosomes are long strands of genetic material, or DNA, that have
been packaged and compressed by wrapping around proteins. The number and size of
chromosomes varies from species to species. In humans, there are 23 pairs of
chromosomes (a pair has one chromosome from each parent). One pair are called the sex
chromosomes because they contain genes that determine sex. The chromosome carrying
the male determining genes is designated Y and the corresponding female one is the X
chromosome. The remaining pairs are called autosomes. Chromosome 1 is the largest and
chromosome 22 the smallest. Each chromosome has two "arms" designated p and q.

Complementary DNA (cDNA)
DNA that is synthesized from a messenger RNA template; the single−stranded form is often
used as a probe in physical mapping or for detecting RNA. Since cDNA is constructed from
messenger RNA (after introns have been spliced out), it does not contain introns.

Cosmid
Artificially constructed cloning vector containing the cos gene of lambda phage (a virus).
Cosmids can be packaged in lambda phage particles for infection into E. coli; this permits
cloning of larger DNA fragments (up to 45 kb) than can be introduced into bacterial hosts in
plasmid vectors.

D

Deoxyribonucleic Acid (DNA)
The chemical that forms the basis of the genetic material in virtually all living organisms.
Structurally, DNA is composed of two strands that intertwine to form a springlike structure
called the double helix. Attached to each backbone are chemical structures called bases (or
nucleotides), which protrude away from the backbone toward the center of the helix, and
which come in four types—adenine, cytosine, guanine, and thymine (designated A, C, G,
and T). In DNA, cytosine only forms optimal hydrogen bonding with guanine, and adenine
only with thymine. These interactions across the many nucleotides in each strand hold the
two strands together.

E

Electrophoresis
The use of electrical fields to separate charged biomolecules such as DNA, RNA, and
proteins. DNA and RNA carry a net negative charge because of the numerous phosphate
groups in their structure. In the process of gel electrophoresis, these biomolecules are put
into wells of a solid matrix typically made of an inert substance such as agarose. When this
gel is placed into a bath and an electrical charge applied across the gel, the biomolecules
migrate and separate according to size in proportion to the amount of charge they carry. The
biomolecules can be stained for viewing and isolated and purified from the gels for further
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analysis. Electrophoresis can be used to isolate pure biomolecules from a mixture or to
analyze biomolecules (such as for DNA sequencing).

Enzyme
A protein that catalyzes chemical reactions in a living cell. Enzymes are protein molecules
whose function it is to speed the making and breaking of chemical bonds required for
essential physiochemical reactions.

Exon
The protein−coding DNA sequences of a gene (see Intron).

Expressed Sequence Tags (EST)
A set of single−pass sequenced cDNAs from an mRNA population derived from a specified
cell population (e.g., a tumor or a particular muscle type). ESTs provide one estimate of
which DNA sequences are actually transcribed and therefore potentially functional as genes.

F

Functional genomics
The use of genetic technology to determine the function of newly discovered genes by
determining their role in one or more model organisms. Functional genomics uses as its
starting point the isolated gene whose function is to be determined, and then selects a
model organism in which a homolog of that gene exists. This model organism can be as
simple as a yeast cell or as complex as a nematode worm, fruit fly, or even a mouse.

G

Gene
The basic unit of heredity; the sequence of DNA that encodes all the information to make a
protein. A gene may be "activated" or "switched on" to make protein—this activation is
referred to as gene expression—by these proteins which control when, where, and how
much protein is expressed from the gene. In the human genome, there are an estimated
30,000 genes (although recent studies suggest a larger number).

Gene product
The biochemical material, either RNA or protein, resulting from expression of a gene. The
amount of gene product is used to measure how active a gene is; abnormal amounts can be
correlated with disease−causing alleles. As gene products include all the alternative splicing
products, there are estimated to be at least 100,000 distinct such products.

Gene therapy
The technology that uses genetic material for therapeutic purposes. This genetic material
can be in the form of a gene, representative of a gene or cDNA, RNA, or even a small
fragment of a gene. The introduced genetic material can be therapeutic in several ways: It
can make a protein that is defective or missing in the patient's cells (as would be the case in
a genetic disorder), or that will correct or modify a particular cellular function, or that elicits
an immune response.

H

High−throughput screening
The use of miniaturized, robotics−based technology to screen large compound libraries
against an isolated target protein, cell, or tissue in order to identify binders that may be
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potential new drugs. In conjunction with genomics and combinatorial chemistry (the
production of large numbers of medicinally relevant compounds), high−throughput screening
has revolutionized the capacity of pharmaceutical and biotechnology companies to identify
potential new drugs. Typically, high−throughput screening has relied on 96−well plates as
the standard, although higher−density formats (384, 1536) are possible. Recently, advances
in miniaturization and micro fluidics have allowed screening of up to 100,000 compounds
against a target on a single chip daily.

Hybridization
The interaction of complementary nucleic acid strands. Since DNA is a double−stranded
structure held together by complementary interactions (in which C always binds to G, and A
to T), complementary strands favorably reanneal or "hybridize" to each other when
separated.

I

Intron
Noncoding portion of the gene that is spliced out from the nascent RNA transcript in the
process of making an mRNA transcript. Frequently includes regulator elements (i.e., binding
sites) in addition to those of the promoter.

M

Microfluidics
Microfluidics is the miniaturization of fluid−based biochemistry to very small volumes such
that a large series of chemical reactions can be performed in parallel in a microarray format.
The essential issue with developing microfluidics based devices is the ability to maintain
adequate access to the solutions needed in each element of the array. Several companies
have manufactured "labs−on−a−chip" that allow the high−throughput chemistries needed in
screening, synthesis, and probing of biological molecules.

Mutation
Any alteration to DNA that can potentially result in a change in the function of one or more
genes. Mutations can be a change in a single base of DNA (point mutation) or a loss of base
pairs (deletion) affecting a single gene, or a movement of chromosomal regions
(translocation) affecting many genes. Some changes in DNA occur naturally and lead to no
harmful effects; these changes in a population are called polymorphisms.

N

Northern Blot
RNA from a sample is spatially separated and distributed by mass on a gel. Radioactively
labelled DNA or RNA strands with sequence complementary to the RNA segments from the
sample are used to locate the position of those RNA segments.

O

Oligonucleotide
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A short molecule consisting of several linked nucleotides (typically between 10 and 60)
chained together and attached by covalent bonds.

Open Reading Frame
Regions in a nucleotide sequence that are bounded by start and stop codons and are
therefore possible gene coding regions.

P

Pharmacogenomics
Pharmacogenomics is the study of the pharmacological response to a drug by a population
based on the genetic variation of that population. It has long been known that different
individuals in a population respond to the same drug differently, and that these variations are
due to variations in the molecular receptors being affected by the drug, or to differences in
metabolic enzymes that clear the drug. Pharmacogenomics is the science of studying these
variations at the molecular level. Applications of pharmacogenomics include reducing side
effects, customizing drugs, improvement of clinical trials, and the rescue of some drugs that
have been banned due to severe side effects in a small percentage of the eligible
population.

Polymorphism
Difference in nucleotide sequence among individuals. Single nucleotide polymorphisms
(SNP) are thought to be the principal component of inherited genetic variation. There is
approximately one SNP every 300 to 1000 nucleotide of the human genome.

Probe
Any biochemical agent that is labeled or tagged in some way so that it can be used to
identify or isolate a gene, RNA, or protein. Typically refers to the immobilized specified
nucleic acid in a detection system [8].

Promoter
Regions of DNA typically upstream or before a gene which contain transcription factor
binding sites (see Transcription Factor), but also include elements for specific initiation of
transcription. That is, there are stretches of DNA to which transcription factors may bind and
thereby modulate transcription but which are not promoters, because they do not include the
elements of transcriptional initiation.

Protein family
A set of proteins that share a common evolutionary origin reflected by their relatedness in
function, which is usually reflected by similarities in sequence, or in primary, secondary, or
tertiary structure. A set of proteins with related structure and function.

Proteomics
The study of the entire protein complement or "protein universe" of the cell. Mirroring
genomics, proteomics aims to determine the entire suite of expressed proteins in a cell. This
includes determining the number, level, and turnover of all expressed proteins, their
sequence and any post−translational modifications to the sequence, and protein−protein and
protein−other molecule interactions within the cell, across the cell membrane, and among
(secreted) proteins.

Polymerase chain reaction (PCR)
A technique used to amplify or generate large amounts of replica DNA or a segment of any
DNA whose "flanking" sequences are known. Oligonucleotide primers that bind these
flanking sequences are used by an enzyme to copy the sequence in between the primers.
Cycles of heat to break apart the DNA strands, cooling to allow the primers to bind, and
heating again to allow the enzyme to copy the intervening sequence lead to doubling of the
DNA present at each cycle.
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S

Serial Analysis of Gene Expression (SAGE)
The use of short 10–14 bp sequence tags linked together to identify sequences in a sample.
The count of the instances of each sequence in a specific sample is a number that bears (in
theory) a direct relationship to the number of transcripts of a particular genes (see section
7.1.4).

Single nucleotide polymorphism (SNP)
Variations in single base pairs scattered throughout the human genome that serve as
measures of genetic diversity in humans. About 1 million SNPs are estimated to be present
in the human genome, and SNPs are useful markers for gene mapping and disease studies.

Southern Blot
DNA from a sample is cut with restriction enzymes and the position of the fragments (e.g. on
a gel) is determined by the fragment's molecular weight. Complementary strands of
radioactively labelled DNA are used to identify the position of the DNA fragments on the gel.

T

Transcription Factor
A molecute, typically a protein, which binds to promoter (see Promoter) or other DNA
binding sites with some regulatory role in transcription. The binding (or unbinding) of a
transcription factor from a promoter eventually leads to a change of transcription activity in
the gene controlled by that promoter.

Target
The free nucleic acid that is being interrogated [8].
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List of Figures
Chapter 1: Introduction

Figure 1.1: Time−series data from anaerobic metabolism. The time courses of measured
concentration of the small molecule inputs, adenine monophosphate (AMP), a source of
chemical energy to catalyze reactions) and citrate (a substrate), in the experiments, with the
responses of the concentrations of phosphate (Pi, an inorganic ion) and of the substrates
fructose−1,6−biphosphate (F16BP), dihydroxy acetone phosphate (DHAP),
fructose−6−phosphate (F6P), glucose−6−phosphate (G6P), and fructose−2,6−biphosphate
(F26BP). (Derived from Arkin et al. [12].)
Figure 1.2: Glycolytic pathway reconstructed ab initio from time−series data. A, The
two−dimensional projection of the correlation metric construction (CMC), defined by Arkin et
al., for the time series shown in figure 1.1. Each point represents the time series of a given
species. The closer two points are, the higher the correlation between the respective time
series. Black (gray) lines indicate negative (positive) correlation between the respective
species. Arrows indicate temporal ordering among species based on the lagged correlations
between the their time series. B, The predicted reaction pathway−derived CMC diagram. Its
correspondence to the known mechanism of glycolysis is high. (Derived from Arkin et al.
[12].)
Figure 1.3: Relative growth of MEDLINE and GenBank. The industrialization of genomic
data acquisition has created a growing gap between knowledge—of which MEDLINE
publications are a proxy—and the information we have gathered about the genome.
Information science applied to this information (i.e., bioinformatics) is one of the pillars of an
international strategy to overcome this knowledge gap. Cumulative growth of molecular
biology and genetics literature (light gray) is compared here with DNA sequences (dark
gray). Articles in the G5 (molecular biology and genetics) subset of MEDLINE are plotted
alongside DNA sequence records in GenBank over the same time period. (Derived from
Ermolaeva et al. [65].)
Figure 1.4: A major difference between classic clinical studies and microarray analyses. The
high dimensionality of genomic data in contrast to the relatively small number of samples
typically obtained results in a highly underdetermined system.
Figure 1.5: An archetypal functional genomics pipeline. Shown is a simplified view of a
functional genomics pipeline solely involved in expression microarray experiments. Note the
interdigitation of "wet" and "dry" components requiring close multidisciplinary collaboration
and some creative consideration of the value of the individual contributions in this pipeline
for a particular experiment and publication.
Figure 1.6: The functional genomics investigation as a funnel for traditional biological
investigations. Broad questions and comprehensive data are the mix in which bioinformatics
techniques are filtered to separate high−yield hypotheses or candidate genes from spurious
findings and poor−quality hypotheses.
Figure 1.7: Flow of genetic information, from DNA to RNA to protein. This simplified diagram
shows how the production of specific proteins is governed by the DNA sequence through the
production of RNA. Many stimuli can activate the specific transcription of genes, and
proteins can play a wide variety of roles within or outside cells. Note that even in this
simplified model, it is obvious that since we are currently able to (nearly) comprehensively
measure only gene expression levels, we are missing comprehensive measurements of
protein modification, activity, transcriptional stimuli, and many other components of the state
of a cell.
Figure 1.8: Genetic machinery of the circadian rhythm. Current molecular model of rhythm
generation in Drosophila, from [191]. The succession of events (A–F) occur over the course
of approximately 24 hours. A, CLOCKBMAL heterodimers bind the per and tim promoters
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and activate mRNA expression from each locus; CLOCKBMAL may also activate
transcription of other circadian−regulated genes (not shown). B, per and tim mRNA are
transported to the cytoplasm and translated into PER and TIM protein, respectively. C,
Regulation of protein levels occurs by two mechanisms: DBT protein phosphorylates and
destabilizes PER, and light destroys TIM. Light during the early subjective night can
phase−delay the clock. Small "blobs" indicate degraded proteins. D, PER and TIM levels
slowly accumulate during the early subjective night; TIM stabilizes PER and promotes
nuclear transport. E, PER and TIM dimers enter the nucleus and inhibit
CLOCKBMAL−activated transcription. F, Protein turnover (combined with the lack of new
PER and TIM synthesis) leads to derepression of per and tim mRNA expression; the cycle
begins again (A). Light during the late subjective night can phase−advance the clock.

Chapter 2: Experimental Design

Figure 2.1: Three experiments within the multi−dimensional representation of experiment
design space. Experiment design space defines all the possible stimuli or conditions to
which a particular biological system could be subjected. Shown here is an experiment
design space that is concerned with insulin signaling in different tissues, in different mouse
"knockout" models, with different levels of insulin.
Figure 2.2: Expression space in which gene expression is loosely versus tightly coupled. If
genes are tightly coupled in the expression space, they will tend to occupy a small subspace
of expression space over any set of experiments. If, however, these genes are loosely
coupled or even causally unrelated, then their expression levels will have little relation to one
another and therefore tend to be scattered over a greater volume of the expression space.
Figure 2.3: Apparently random relationship in expression space between two genes.
Figure 2.4: Apparently linear relationship in expression space between two genes.
Figure 2.5: Apparently curvilinear relationship in expression space between two genes. This
curvilinear relationship would be obscured if the expression space had been insufficiently
exercised.
Figure 2.6: Noninvasive monitoring of mechanistic behavior. By observing the concerted
action of the watch hands, several competing weak hypotheses about the underlying
mechanism can be generated. The more observations made at different times, the smaller
the number of possible hypotheses generated.
Figure 2.7: Decomposition of the watch. An invasive exploration of mechanism will reveal
most of the components of that mechanism. In the process of the invasive investigation
some of the components will be damaged. Also, the relationship of these components inside
a working watch must be inferred and is not directly observed because of the invasive nature
of this investigation.
Figure 2.8: An example of why discovery of pathways solely using gene expression
measurements is difficult. At least three "pathways" are involved in the conversion of lactic
acid to pyruvate. The highest enzyme level pathway involves the action of an enzyme called
lactic acid dehydrogenase, designated EC 1.1.1.27. However, when one traverses to a
lower−level pathway, one learns that the role of this enzyme is performed by five separate
protein products, which appear in a binomial distribution. When one traverses lower, through
the assembly pathway, one learns this distribution is present because of the various possible
combinations of LDHA and LDHB, two individual protein subunits, of which four must be put
together to make an active enzyme. Then, when one traverses even lower, through the
genetic regulatory pathway, one learns that each of these subunits is regulated differently,
and appears on different chromosomes. Not shown are the pathways involved in
transcription, translation, movement of proteins to the appropriate locations, and movement
of substrates into and out of the cells and organelles, and many other pathways.
Figure 2.10: Typical uses of fixed fold thresholds. Reproducibility scatter plots. In each of the
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experiments, samples were hybridized to identical oligonucleotide arrays containing probes
for 6800 human genes. The message abundance in arbitrary units is plotted. Left panel: A
single biotinylated RNA target was divided in two and each half hybridized to two arrays.
Fifty−nine genes (0.8%) judged to be expressed "present" by the Affymetrix GeneChip
software differed by more than twofold, and 0.3% differed by more than threefold. Middle
panel: A single biotinylated target was hybridized to one array, the sample removed and
then rehybridized to a second array. Of "present" genes 2.6% and 0.4% differed by more
than twofold and threefold, respectively. Right panel: A single total RNA sample was
converted to biotinylated cRNA in two independent labeling reactions, and the cRNA then
hybridized to two arrays. Of the "present" genes 2.2% and 0.4% differed by twofold and
threefold, respectively.
Figure 2.9: A decision analytic procedure for picking a threshold for selecting genes from a
functional genomics experiment. Because of the large number of probes on current
microarrays, it is all too easy to underestimate the cost and practical intractability caused by
even a moderate false positive rate. Investigators are advised to perform this simple
decision analysis in order to determine what false positive and false negative rate they can
afford before they proceed with any experiments.
Figure 2.11: Clustering more than only expression values. A full−edged functional genomic
study with clinical relevance will involve multiple and quite heterogeneous data types. The
realities of clinical research and clinical care will ensure that there is a requirement for the
handling of missing data.

Chapter 3: Microarray Measurements to Analyses

Figure 3.1: The nongenomic time scale response in aldosterone exposure. The response (in
seconds) shown here is much faster than any known receptor−to−transcription response
that steroid hormones are usually thought to act through. (Derived from Gamarra et al. [74].)
Figure 3.2: Robotically spotted microarray hybridized to two samples, each stained with two
colored dyes. An overview of procedures for preparing and analyzing cDNA microarrays and
tumor tissue. Reference RNA and tumor RNA are labeled by reverse transcription with
different fluorescent dyes (green for the reference cells and red for the tumor cells) and
hybridized to a cDNA microarray containing robotically printed cDNA clones. The slides are
scanned with a confocal laser scanning microscope, and color images are generated for
each hybridization with RNA from the tumor and reference cells. Genes upregulated in the
tumors appear red, whereas those with decreased expression appear green. Genes with
similar levels of expression in the two samples appear yellow. Genes of interest are selected
on the basis of the differences in the level of expression by known tumor classes (e.g.,
BRCA1 mutation−positive and BRCA2 mutation−positive). Bioinformatics analysis
determines whether these differences in gene expression profiles are greater than would be
expected by chance. (Derived from Hedenfalk et al. [90].)
Figure 3.3: The photolithographic construction of microarrays. Synthesized high−density
oligonucleotide microarray manufacturing with photolithography. Using selective masks,
photolabile protecting groups are light−activated for DNA synthesis (1, 2); photoprotected
DNA bases are added and coupled to the intended coordinates (3). This cycle is repeated
(4) with the appropriate masks to allow for controlled parallel synthesis of oligonucleotide
chains in all coordinates on the array (5). (Derived from Lipshutz et al. [121].)
Figure 3.4: Pixel, probe cell, and Affymetflrix scanned image. Schematic showing how
images are composed of probe cells, which contain probes that appear as pixels. (Derived
from Jain [102].)
Figure 3.5: Background noise on Affymetrix arrays. A, A diagram showing how background
noise variance is obtained from the background cells. B, The calculation of the background
noise. C, The definition of SDT and SRT and how they define "positive" and "negative" probe
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pairs. (Derived from [10].)
Figure 3.6: Nonspecific hybridization on an oligonucleotide microarray. The two rows of
probe cells represent the probe set for a gene transcript. The PM probes are on the top row
and the MM probes are on the bottom row. Even if there is a lot of specific hybridization to
the PM oligonucleotides due to the presence of the targeted gene transcript, if there is
significant nonspecific hybridization, then the amount of transcript cannot be estimated
accurately. In this illustration, the number and intensity of dark probe cells on the bottom row
is higher than that in the top row and therefore most software packages would report that the
reported intensity for the gene is unreliable—an "Absent" Absolute Call in Affymetrix
parlance.
Figure 3.7: The Affymetrix Absolute Call. The relationship between Absolute Call and
expression level for a microarray. Far more Absent (A) calls than Present (P) calls are at
lower expression levels, but significant numbers of Absent calls are found even at
expression levels in the low thousands.
Figure 3.8: Graphical display of how Affymetrix Absolute Calls predict reproducibility.
Correlation of expression levels from the same hybridization "cocktail" measured on two
microarrays. Top: the correlation using only those genes for which an Absent call was
reported by both microarrays. Bottom: only the Present called genes.
Figure 3.9: Expression measurements made in duplicate from the same RNA samples do
not correlate well all the time. RNA samples from four human samples were placed on
duplicate oligochips and the expression of 35,714 ESTs was measured. Each point
represents an EST. The duplicate expression measurements are plotted here on a log−log
scale (base 10). r = .69, .73, .73, .69. (From Butte et al. [40].)
Figure 3.10: When expression measurements do not correlate well, fold differences correlate
even poorer. Fold differences of 35,714 ESTs were calculated between the six possible
pairings of the four patients. Fold differences are expressed in base 10 logarithm, so that
ESTs that did not change between models are plotted in the center of each graph. Fold
differences from the duplicated measures are shown on the x− and y−axes. Even though the
correlation coefficients were high between original and repeated expression values, the
correlation coefficients were very low between original and repeated calculated fold
differences. (From Butte et al., [40].)
Figure 3.11: Overall correlation coefficients for each matching probe and probe set across
two microarray technologies. Great variance is seen in reproducibility of measurements
across probes and probe sets, with some probes showing correlation coefficients near 1.0,
and some even showing a negative correlation (i.e., a gene which is reported as highly
expressed in one technology has an opposite expression report in the other technology).
Figure 3.12: Pooling total RNA extracts for replicate experiments. Two strategies for making
replicated measurements from samples, pooled and not pooled. N may not necessarily
equal n.
Figure 3.13: Apparent differences in source of variance due to log scaling. On the left is the
apparently increased variation at lower expression levels using a plot of the logarithm of all
the gene expression levels measured in one microarray versus the logarithm of all the of the
genes measured on another microarray. When the expression values are plotted on a linear
scale as on the right, then it appears that the higher expression levels have higher variance.
The former scale emphasizes the decreased reproducibility at lower expression levels and
the latter emphasizes that there are fewer measurements or genes at higher expression
levels. Note that for well−definedness, the logarithmic scale plot excludes measurements
that had a negative value.
Figure 3.14: Incyte data file snippet. Heads and the two rows of values from an Incyte data
file. Incyte microarrays are constructed using a robotic spotting process. The spotting
process involves two proximal spots for the two dyes—Cy3 and Cy5—one of which is the
targeted clone and the other a control spot.
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Figure 3.15: Duplicate cDNA assays of a common extract. The same RNA extract or
hybridization "cocktail" measured on two Incyte spotted arrays. The P2S signals (the second
of two dyes) from each microarray is plotted for each gene.
Figure 3.16: Ratio of probe intensities as a function of expression level. The ratio of the
P2S/P2S’ signals (y−axis) from two robotically spotted microarrays plotted against the P2S
signal. The same RNA extract was used in both microarrays. Although the ratio is close to
1.0 for many genes, it does deviate sporadically and widely in a few instances. Also, as the
expression level decreases, the distribution of the ratio spreads increasingly away from 1.0.
Figure 3.17: Ratio of expression level as a function of position. The ratio of the two different
dye intensities per gene for a single microarray plotted against the position in the array
(defined as a single number that is computed from the x and y coordinates of the probe on
the array). The "control islands" that contain "spiked" controls on the array were not included
in this plot. Also, all expression values were corrected for background noise. No particular
pattern is obvious on inspection.
Figure 3.18: Fourier analysis of spatial series on spotted microarray. The same data
illustrated in figure 3.17 is subjected to a Fourier analysis to extract systematic periodic
signals. As shown, the frequency with the largest power is 4. That is, there appears to be a
periodicity of 4 per microarray based on the position of the probe on the microarray. The
magnitude of this systematic variation dominates fold changes in gene expression of the
magnitude reported elsewhere as noteworthy.
Figure 3.19: Incyte GEM Microarray circa 1999. In this photograph of a GEM microarray,
note that there are four quadrants which are each spotted with separate pins.
Figure 3.20: Problems in images acquired from microarrays. On the left: a contaminated D
array from the Murine 6500 Affymetrix GeneChip set. Several particles are highlighted by
arrows and are thought to be torn pieces of the chip cartridge septum, potentially resulting
from repeatedly pipetting the target into the array [156]. On the right top: local changes in
intensity due to contaminants and scratches. (Derived from
http://www.mediacy.com/arraypro.htm.) Right bottom: high magnification of a scanned image
of a spotted microarray. Note the different sizes and shapes of the spots [199].
Figure 3.21: Estimate of the incidence of alternative splicing in genes. While most genes
have only one spliced product, many have more than one, and this can affect the the gene
product detection efficacy and rate by microarrays. (Derived from Mironov et al. [132].)
Figure 3.22: Identity mask for experiment A. Method 2 with parameters 9000 for expression
value sliding window size and scaling factor 0.975 resulted in the lowest percentage of
original data points lying outside of the mask region (0.7%).
Figure 3.23: Identity mask for experiment E. Method 1 with parameters 5000 for intensity
window size and 3 SD resulted in the lowest percentage of original data points lying outside
of the mask region (0.9%).
Figure 3.24: Entropy plot
Figure 3.25: Graphical example of mutual information calculation. First, a scatterplot of the
expression measurements of the two genes is created, and a grid is imposed. In this
example, each expression measurement is quantized into four bins (one can think of these
as "low," "low−medium," "high−medium," and "high," though anynumber and positioning of
bins can be considered). The entropy for each gene is then calculated using the row and
column sums, and the joint entropy is calculated from the grid.
Figure 3.26: Dynamic relationships between genes. (a) The expressed product of Gene A
binds an enhancer region that increases transcription of Gene B. (b) Gene B's initial
expression level before being affected by Gene A can vary throughout the experiment. As a
result, measuring the correlation between the absolute levels of Genes A and B will not
reveal the underlying enhancement relationship between the two. Instead, this can only be
done by analyzing the expression dynamics—the change in expression level of Gene B in
relation to the expression level of Gene A. (Derived from Reis et al. [150].)
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Figure 3.27: Negative dynamic correlation. The distribution of slopes of MAD3 and EXM2
plotted one against another.

Chapter 4: Genomic Data−Mining Techniques

Figure 4.1: Example of how a single point can distort overall correlation. On the left: the
scatterplot shows a negative correlation. The scatterplot on the right is identical, save for the
additional point added. If the values of even a single point are high enough, the correlation
coefficient can be altered (though the variance of the correlation coefficient, if calculated,
would be higher). This is primarily because using the correlation coefficient assumes values
distributed normally.
Figure 4.2: Detecting spikes by calculating entropy. The top graph shows a hypothetical
gene with "spiking" behavior; i.e., the gene expression is markedly higher in two samples,
compared to the other samples. The bottom graph shows a second hypothetical gene with
gene expression measurements that are more distributed across the dynamic range.
Distribution of the gene expression measurements are not just a characteristic of the gene; it
is also connected to the samples in which expression was measured.
Figure 4.3: Genes can be represented as points in a multidimensional space. Each sphere
represents a gene measured in three tissue samples. Each of the expression levels is
considered as a measure along a three−dimensional coordinate. One can imagine that
genes with similar expression levels in all three samples may be grouped as clusters in the
three−dimensional space. These clusters can be found using an unsupervised technique,
such as self−organizing maps.
Figure 4.4: Principle of self−organized maps. Centroids start in an arbitrary topology; then,
as the method progresses, each moves toward a randomly chosen gene during each
iteration. After proceeding for enough time, each centroid will be in the middle of a cluster.
(From Tamayo et al. [175].)
Figure 4.5: Graphical convention for self−organizing maps. (Derived from Tamayo et al.
[175].)
Figure 4.6: Genes can have a difference in interaction, but not in expression level.
Scatterplot of gene A and gene B, measured in samples from disease 1 (open circles) and
disease 2 (closed circles). Note that expression measurements from neither gene A nor
gene B can be used to separate disease 1 from disease 2. However, the linear regression
model of gene expression levels from disease 2 is different from disease 1.
Figure 4.7: Four possible ways to order comprehensive pairwise comparisons. We define
the term measure−triangle as the comprehensive pairwise comparison between each of a
set of features. The comparisons can be performed and stored in any of four different ways.
Figure 4.8: Graphical convention for dendrograms.
Figure 4.9: Two−dimensional dendrogram. Dendrograms are constructed for both the genes
and samples individually, and are combined in the display. (Derived from Ross et al. [154].)
Figure 4.10: Sample relevance network. One of 78 networks formed by aggregating mouse
samples from six different experiments. Threshold  was set to .99, meaning that the
"thinnest" line seen represented an  of .99. The legend for this type of diagram is shown in
figure 4.11. The hypothesis generated here is that RBBP4 expression correlates with GNS
and MAX gene expression. The miniature histograms for each gene show no "spiking" in the
expression measurements (see section 4.5.2). Each of these genes appears at a different
chromosomal location. By including information from LocusLink (see section 5.5.1) and
Gene Ontology (see section 5.1.1), we see that RBBP4 is known to control cell proliferation,
and MAX is involved in oncogenesis.
Figure 4.11: Graphical convention for relevance networks. To optimize the hypothesis
generation process, relevance network display software contains ties from microarray
accession number to GenBank, UniGene, LocusLink, Gene Ontology, and other databases
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(see section 5.5 for details of this process).
Figure 4.12: Relevance network laid out as a circle. Relevance networks with too many
genes may be rendered in circles that minimize overlapping nodes and edge crossings.
However, these may be impossible to visualize.
Figure 4.13: Subcategories of B−cell lymphoma determined by microarrays correspond
clinically to duration of survival. On the left is a dendrogram constructed across the samples
of B−cell lymphoma, using an unsupervised technique. The top branchess entially defines
an even split between the categories GC B−like DLBCL and Activated B−like DLBCL, but
this distinction was never before made clinically. On the right are Kaplan−Meier survival
curves of the patients from whom the samples were obtained. Patients whose cancer
matched the Activated B−like DLBCL gene expression profile had a significantly worse
prognosis. (From Alizadeh et al. [3].)
Figure 4.14: Feature reduction with principal components analysis. Two genes are
measured in eight samples, four from one disease (marked by X) and four from another
disease (marked by O). The expression measurements of gene A are represented on the
x−axis and the expression measurement of gene B are represented on the y−axis. Note that
the first principal component (i.e., the vector that captures the most variance) is parallel to
the x−axis, which corresponds to gene A. However, the line that best splits the two diseases
is described by its orthogonal vector along the y−axis, which corresponds to gene B. This
means that although the variance seen in gene A best explains the overall variance seen in
gene expression measurements in each disease and both together, the variance seen in
gene B is best used to split the two diseases. Although this is easy to distinguish in this
simplified two−dimensional case, it is not so easily visualized in a real−world,
multidimensional data set.
Figure 4.15: Distribution of  in the original versus permuted gene expression data set. The
distribution of  calculated using an original gene expression data set is shown with solid
circles. For each gene, expression measurements were independently randomly shuffled
100 times. The average distribution of  is shown with error bars covering 2 SD. In this
example, random permutation was unable to create an association with  or < �.85.
(From Butte et al. [39].)
Figure 4.16: Identifying differences between the test and training sets through clustering.
The matrix incision tree algorithm from [108] was applied to the leukemia classification
problem published by Golub et al. [78]. The algorithm correctly clustered 64 of the overall 72
cell lines (94%) in the data set, placing the acute myelogenous leukemia (AML) samples in
branches (c) and (d), the acute lymphocytic leukemia (ALL) samples in branches (a) and (b),
and misclassifying four ALL samples into branches (c) and (d). However, the matrix incision
tree also successfully revealed the distinction between the published training set (cases
1–38, italic, placed in branches (b) and (c)) and the test set (cases 39–72, placed in
branches branches (a) and (d)) with 100% accuracy. It is unlikely that the biology of the test
set of the AML and ALL cell lines were that different from the cell lines in the training set. It is
much more likely that systematic changes in the hybridization conditions, or different sample
preparation, or the use of a different batch of microarrays were responsible for the clustering
of test versus training sets.
Figure 4.17: Contingency table illustrating performance metrics for classification algorithms.
Figure 4.18: Sensitivity and specificity trade−offs are defined bythe ROC curve. ROC curves
A, B and C describe the trade−offs in sensitivity and specificity for the same data set using
three different classification algorithms. C is clearly the best algorithm because the area
under the curve is the highest. That is, it provides a better set of sensitivities and specificities
for all values of these. In contrast, B and C provide trade−offs inferior to A and for some
range of sensitivities, B provides better performance than C, and vice versa.
Figure 4.19: Example of a bayesian network. This network describes the impact of
Initial_Condition and External_Action on Effect. This network is equivalent to
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the underlying joint probability distribution over the three variables, shown in table 4.1.

Chapter 5: Bio−Ontologies, Data Models, Nomenclature

Figure 5.1: The Molecular Function Ontology of GO. (From Ashburner et al. [13].)
Figure 5.2: The Cellular Component Ontology of GO. (From Ashburner et al. [13].)
Figure 5.3: The Biological Process Ontology of GO. (From Ashburner et al. [13].)
Figure 5.4: The KEGG representation for apoptosis.
Figure 5.5: The MeSH terminology hierarchy. A portion of the MeSH terminology hierarchy
starting at the top level and showing the first level of detail at the disease subhierarchy. The
entire hierarchy may be browsed at http://www.nlm.nih.gov/mesh/MBrowser.html.
Figure 5.6: Transforming a cluster of genes into an annotated structure automatically using
MEDLINE. Summary of concept hierarchy matches with the MeSH hierarchy terms for
genes described by Golub et al. [78] that fell into the acute lymphoblastic leukemia (ALL)
cluster.
Figure 5.7: A subset of the definition of sample in the GEO. At the time of this writing, the
sample definition in the GEO does not appear to support the full complexity of
oligonucleotide high−density microarrays.
Figure 5.8: The abstraction layers of the Gene Expression Mark−up Language (GEML).
Figure 5.9: The GEML pattern document type description.
Figure 5.10: The MAML pattern document type description. Shown are three fragments of
the MAML DTD. The first column demonstrates the generic description of a data set creator.
The second column demonstrates the capability of maml to support composite expression
measurements and analyses of the sort found on the Affymetrix platform.
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Figure 7.1: Lawsuits in the microarray field. With the number of lawsuits already in this area,
it should be no surprise that companies in this industry are striving to determine new and
unique intellectual property. (From Gibbs et al [77].)
Figure 7.2: The Nanogen microelectronic array.
Figure 7.3: Flexibility of on−the−fly ink−jet arrays. On the right is a comparison of
morphology of ink−jet versus pin arrays. Ink−jet printing produces uniform and consistent
features. An artifact of on−the−fly printing is formation of oblong spots at maximum print
speed (full fires) that can be made into circles upon slowing down. This underscores the
theoretical flexibility of this system.
Figure 7.4: The Illumina BeadArray.
Figure 7.5: The Serial Analysis of Gene Expression. (Derived from Madden et al. [124].
Figure 7.6: Poor measurement reproducibility across microarray generations. Two
generations of Affymetrix microarrays were used to the gene expression of seven samples.
Each of the 8075 common probe sets thus had seven measurements from both the older
HuGeneFL and newer HG−U95A microarrays. The line represents the distribution of
correlation coefficients of each probe set. Though the exact correlation coefficient may not
be useful, it is notable that over 25% of the probe sets showed measurements that were
zero or negatively correlated across generations. (Derived from Nimgaonkar et al. [136].)
Figure 7.7: Measurement reproducibility of probe sets across microarray generations, by the
number of probe pairs in common. A total of 8075 probe sets are deemed in common by
Affymetrix between the older HuGeneFL and the newer HG−U95A microarrays. However,
each probe set has a varying number of common probe pairs, from none to all 16. The bar
graph represents the distribution of the 8075 probe sets, and the line represents the
correlation coefficients of each set of probe sets across generations. For example, one finds
a correlation coefficient of .77 when plotting all 6412 probe sets with one probe pair in
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common across microarray generations. (Derived from Nimgaonkar et al. [136].)
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